WATERLOO

FACULTY OF MATHEMATICS
WATERLOO, ONTARIO N2L 3G1

Grade 7/8 Math Circles November 28/29/30, 2017 Math Jeopardy

Introduction

Questions will vary in difficulty with \$100 questions tending to be the easiest, and \$500 questions tending to be the hardest. Do your best, good luck and have fun!

Angles and Light

\$100 What term describes the bending of light as it crosses the boundary separating 2 media?

\$200 What are the angle theorems we learned that you can use when you have parallel lines?

\$300 Find the missing angle:

\$400 Prove the Opposite angle theorem.

\$500 A beam of light shines from point S, reflects off a mirror MN at point P, and reaches point T so that PT is perpendicular to RS. What is the measure of $\angle SPM$? (Problems, Problems, Problems, Volume 7: page 37, question 10) **Hint:** Think about the Law of Reflection

Matrices

\$100 What is the transpose of this matrix:

$$A = \begin{bmatrix} 13 & 2 & 1 \\ 5 & 3 & 4 \end{bmatrix}$$

\$200 Do the following matrix addition:

$$\begin{bmatrix} 4 & -2 \\ 24 & 0 \\ 7 & 30 \end{bmatrix} + \begin{bmatrix} 9 & 11 \\ 5 & 16 \\ 8 & -4 \end{bmatrix}$$

\$300 Do the following matrix subtraction:

$$3 \begin{bmatrix} 2 & 4 & 1 \\ 12 & 0 & 5 \\ 20 & 3 & 4 \end{bmatrix} - \begin{bmatrix} 3 & 6 & 1 \\ 17 & 4 & 8 \\ 53 & 5 & 10 \end{bmatrix}$$

\$400 Which of these matrices could you multiply, and what would be the dimension of the final matrix?

- (a) $(n \times n) \times (m \times m)$
- (b) $(n \times m) \times (m \times t)$
- (c) $(n \times m) \times (t \times m)$

\$500 Do this matrix multiplication:

$$\begin{bmatrix} 3 & 2 & 1 \\ 5 & 3 & 4 \end{bmatrix} \begin{bmatrix} 7 & 1 \\ 2 & 5 \\ 10 & 4 \end{bmatrix}$$

3

Boolean Logic

\$100 Name these logical operators:

$$\neg, \vee, \wedge, \uparrow, \downarrow$$

\$200 What operator this truth table for?

A	B	
True	True	True
True	False	False
False	True	False
False	False	True

\$300 Convert the binary number 100101 to decimal form

\$400 Why are truth table useful?

\$500 Evaluate this logical statement:

$$(\neg (True \land \neg False) \lor False) XNOR((True \downarrow \neg False) \land \neg False)$$

Physics and Special Relativity

\$100	What are the two Newtons Laws of Motion that we talked about?
\$200	What kinds of frames does Special Relativity deal with? What does that mean?
\$300	What is the total force on an object if it has mass 5 kg and is moving with velocity 2 m/s [Up]?
\$400	Explain the classical Principle of Relativity, and how Einstein changed it for Special Relativity.
\$500	How much time does Alice observe passes for Bob if 10 seconds pass for Alice, and Bob flies by Alice at a constant velocity, with a speed of $0.6c$

Miscellaneous

\$100	What room are you taught in?
\$200	How did George Boole die?
\$300	How old are your Math Circles teachers?
\$400	How much wood would a woodchuck chuck if a woodchuck could chuck wood
\$500	What is the capital of Bulgaria?

Gauss Contest

\$100 In $\triangle PQR$ shown, side PR is horizontal and side PQ is vertical. The coordinates of P are

- (A) (-8, -2) (B) (-6, -8) (C) (-11, -6)
- **(D)** (-11, -2) **(E)** (-8, -6)
- \$200 The two scales shown are balanced. Which of the following is not true?

- $(A) \bigcirc = \triangle$
- (B) $\triangle \triangle = \bigcirc \square \square \square$
- $(C) \bigcirc = \Box \Box \Box$
- $(\mathbf{D}) \bigcirc \triangle = \square \square \square \square$
- $(\mathbf{E}) \triangle = \square \square \square$

The value of $\frac{1}{1+\frac{1}{1+\frac{1}{2}}}$ is

- (A) $\frac{3}{5}$ (B) $\frac{5}{3}$ (C) $\frac{1}{3}$
- **(D)** 3
- (E) $\frac{3}{2}$
- \$400 How many numbers from the set $\{-5, -4, -3, -2, -1, 0, 1, 2, 3\}$ satisfy the inequality $-3x^2 < -14$? (A) 1 (B) 2 (C) 3 (D) 4 (E) 5

\$500 In the diagram, ABCD is a square with area 25 cm². If PQCD is a rhombus with area 20 cm², the area of the shaded region, in cm², is

- (A) 12 **(D)** 12.5
- **(B)** 10
- **(E)** 9

Final Jeopardy

How many pairs of positive integers (x, y) have the property that the ratio x: 4 equals the ratio 9: y?

(A) 6

(B) 7

(C) 8

(D) 9

(E) 10