Problem Set 1

Intermediate Math Circles Winter 2018
Fun With Inequalities

Linear Inequalities- Single Variable

Solve each of the following.

1. \(x + 5 < \frac{7}{2} \) \(x < \frac{7}{2} - 5 \)
 \(x < \frac{7}{2} - \frac{10}{2} \)
 \(x < -3 \)

2. \(3 - \frac{x}{2} \geq -8 \)

3. \(-1 - 3x \leq 4x + 10 \)

4. \(2x + 5 > 4x - 7 \)

5. \(-\frac{2}{3}x + \frac{3}{7} \leq 5 - \frac{x}{2} \)

Absolute Values

Solve each of the following algebraically. Check your answer graphically.

1. \(|x + 6| = 5 \)

2. \(|x - 4| \geq 1 \)

3. \(|4 - x| \geq 1 \)

4. \(|2x + 1| < 7 \)

5. \(|x - 2| + |x + 5| = 8 \)

6. \(|x| + |2 - x| \leq 12 \)
Properties

1. Which of the eight properties of \leq also hold for $<$?

2. Use whichever of the properties (1) to (8) that you need to prove the following

 (a) If $a \leq b$ and $c \leq d$, then $a + c \leq b + d$.

 (b) If $0 \leq a \leq b$ and $0 \leq c \leq d$, then $0 \leq ac \leq bd$.

3. (a) If $a \leq b$ and $c \leq d$, is it true that $ac \leq bd$?

 (b) If $a \leq b$, is it true that $\frac{1}{b} \leq \frac{1}{a}$?

4. Show that if $a < b$, then $a < \frac{1}{2}(a + b) < b$.

5. Show that the sum of a positive number and its reciprocal is at least 2.
 In other words show that

 $$a + \frac{1}{a} \geq 2$$