1. Determine if the following series converge or diverge, if the series converges find its sum.

(a) \(\sum_{n=0}^{\infty} \left(\frac{13}{12} \right)^n \).

Solution: This series diverges since \(r = \frac{13}{12} \geq 1 \).

(b) \(\sum_{n=0}^{\infty} \left(\frac{2}{7} \right)^{n+1} \)

Solution: This series converges, \(r = \frac{2}{7} < 1 \), and we get
\[
\sum_{n=0}^{\infty} \left(\frac{2}{7} \right)^{n+1} = \sum_{n=0}^{\infty} \frac{2}{7} \cdot \left(\frac{2}{7} \right)^n = \frac{2}{7} \cdot \frac{1}{1 - \frac{2}{7}} = \frac{2}{5}.
\]

(c) \(\sum_{n=0}^{\infty} 2^{3n} \cdot 5^{2-n} \).

Solution: Let’s simplify first:
\[
\sum_{n=0}^{\infty} 2^{3n} \cdot 5^{2-n} = \sum_{n=0}^{\infty} 2^{3n} \cdot 5^2 \cdot 5^{-n} = \sum_{n=0}^{\infty} 25 \cdot \frac{8^n}{5^n} = \sum_{n=0}^{\infty} 25 \cdot \left(\frac{8}{5} \right)^n
\]
and so this series diverges since \(r = \frac{8}{5} \geq 1 \).

(d) \(\sum_{n=0}^{\infty} \frac{2^{n-1}}{3^{n+1}} \).

Solution:
\[
\sum_{n=0}^{\infty} \frac{2^{n-1}}{3^{n+1}} = \sum_{n=0}^{\infty} \frac{1}{6} \cdot \frac{2^n}{3^n} = \sum_{n=0}^{\infty} \frac{1}{6} \cdot \left(\frac{2}{3} \right)^n = \frac{1}{6} \cdot \frac{1}{1 - \frac{2}{3}} = \frac{1}{2}.
\]
In this case \(r = \frac{2}{3} < 1 \).

(e) \(\sum_{n=1}^{\infty} \left(\frac{4}{9} \right)^n \)

Solution: Clearly the series converges since \(r = \frac{4}{9} < 1 \), but the index of this series doesn’t start at the usual \(n = 0 \). If \(n \) were zero then the first term would be 1, so let’s add and subtract that:
\[
\sum_{n=1}^{\infty} \left(\frac{4}{9} \right)^n = -1 + 1 + \sum_{n=1}^{\infty} \left(\frac{4}{9} \right)^n = -1 + \sum_{n=0}^{\infty} \left(\frac{4}{9} \right)^n = -1 + \frac{1}{1 - \frac{4}{9}} = -1 + \frac{9}{5} = \frac{4}{5}.
\]
2. Write the following infinite decimals as a single fraction

(a) 0.1919191919... = 0.19.

Solution:

\[0.19 = \frac{19}{100} + \frac{19}{100^2} + \cdots = \frac{19}{100} \left(1 + \frac{1}{100} + \frac{1}{100^2} + \cdots\right) = \frac{19}{100} \sum_{n=0}^{\infty} \left(\frac{1}{100}\right)^n \]

which is a convergent series (since \(r = \frac{1}{100} < 1 \)) that sums up to

\[\frac{19}{100} \cdot \frac{1}{1 - \frac{1}{100}} = \frac{19}{99}. \]

(b) 1.123412341234... = 1.1234.

Solution:

\[1.1234 = 1 + \frac{1234}{10000} + \frac{1234}{10000^2} + \cdots = 1 + \frac{1234}{10000} \left(1 + \frac{1}{10000} + \frac{1}{10000^2} + \cdots\right) \]

\[= 1 + \frac{1234}{10000} \sum_{n=0}^{\infty} \left(\frac{1}{10000}\right)^n. \]

Again, this series converges to

\[1 + \frac{1234}{10000} \cdot \frac{1}{1 - \frac{1}{10000}} = 1 + \frac{1234}{9999} = \frac{11233}{9999}. \]

3. Suppose you tweak the defense shields around the planet so that they now reflect \(\frac{1}{3} \) of the beam, absorb \(\frac{5}{9} \) of the beam and transmit \(\frac{1}{9} \) of the beam. What fraction of the starting intensity (I) gets through now?

Solution: The set up and picture are similar to the one in the notes. But in this case the total beam intensity that gets through is

\[\frac{I}{81} + \frac{I}{9(81)} + \frac{I}{9^2(81)} + \cdots = \frac{I}{81} \sum_{n=0}^{\infty} \left(\frac{1}{9}\right)^n = \frac{I}{81} \cdot \frac{1}{1 - \frac{1}{9}} = \frac{I}{81} \cdot \frac{9}{8} = \frac{I}{72}. \]

That’s better than before!

4. Prove that \(\sum_{n=1}^{\infty} \left[(-1)^n \left(\frac{2}{n}\right) \cos^2 \left(\frac{n\pi}{2}\right) \right] \) diverges.

Solution: This series looks ridiculous! But let’s examine each part. The \((-1)^n\) term alternates between \(-1\) if \(n\) is odd and \(1\) if \(n\) is even. The \(\frac{2}{n}\) term looks like twice the harmonic series.
Finally, what does \(\cos^2 \left(\frac{n\pi}{2} \right) \) look like? If \(n \) is even, say \(n = 2k \), then we get \(\cos^2(k\pi) = 1 \). On the other hand, if \(n \) is odd then \(\cos^2 \left(\frac{n\pi}{2} \right) = 0 \). Therefore, the overall term is zero if \(n \) is odd! So let’s only consider the even \(n \), let \(n = 2k \) and we get

\[
\sum_{n=1}^{\infty} \left[(-1)^n \left(\frac{2}{n} \right) \cos^2 \left(\frac{n\pi}{2} \right) \right] = \sum_{k=1}^{\infty} \left[(-1)^{2k} \left(\frac{2}{2k} \right) \cos^2 (k\pi) \right] = \sum_{k=1}^{\infty} \frac{1}{k}.
\]

But that’s just the harmonic series! We’ve already proven that it diverges in the lecture.

5. Find a simple expression for the \(n \)th partial sum of the series and use it to find the sum of the series:

\[
\sum_{n=0}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right)
\]

Such series are called telescoping series and are another example of a series in which we can actually find the sum.

Solution: Let’s start looking at the partial sums.

\[
S_1 = \frac{1}{1} - \frac{1}{2},
\]

\[
S_2 = \frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} = \frac{1}{1} - \frac{1}{3},
\]

\[
S_3 = \frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} = \frac{1}{1} - \frac{1}{4},
\]

and so on. Now we can see the pattern:

\[
S_n = 1 - \frac{1}{n+1}.
\]

What happens to \(S_n \) as \(n \to \infty \)? Clearly \(\frac{1}{n+1} \to 0 \) as \(n \to \infty \), so \(S_n \to 1 \). This series adds up to 1!

6. What’s wrong with the following argument?

Let \(x = 1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \cdots \) and \(y = \frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \cdots \). Then clearly \(2y = x + y \) which means \(x = y \). But notice that

\[
x - y = \left(1 - \frac{1}{2} \right) + \left(\frac{1}{3} - \frac{1}{4} \right) + \left(\frac{1}{5} - \frac{1}{6} \right) + \cdots > 0
\]

since it’s a sum of positive numbers. Therefore \(x > y \). So we have shown that \(x = y \) and \(x > y \).

Solution: The problem is actually right at the start. Both \(x \) and \(y \) are infinite! Each is some part of the harmonic series (\(x \) has the odd terms and \(y \) has the even terms). Therefore it doesn’t make sense to talk about their values nor do arithmetic with them!