1. Prove by induction that the sum of the first \(n \) perfect squares is \(\frac{n(n+1)(2n+1)}{6} \). What form of induction did you use?

2. Find and prove a closed form for \(a_n = 2\sqrt{a_{n-1}} \) with \(a_0 = 2 \).

3. (a) Solve the recurrence \(a_n = a_{n-1} + 2a_{n-2} \) with \(a_0 = 2 \) and \(a_1 = 7 \).
 (b) Redo part (a), except this time, change \(a_0 = 10 \) and \(a_1 = 4 \).
 (c) Redo part (a), except this time, change \(a_0 = a \) and \(a_1 = b \).

4. Solve the recurrence \(a_n = -a_{n-1} + 4a_{n-2} + 4a_{n-3} \) with \(a_0 = 8 \), \(a_1 = 6 \) and \(a_2 = 26 \).

5. Solve the recurrence \(a_n = 6a_{n-1} - 9a_{n-2} \) with \(a_0 = 1 \) and \(a_1 = 6 \).

6. Solve the recurrence \(s_k = as_{k-1} \) for any value of \(a \). Using that solution, solve \(s_k = as_{k-1} + 1 \).

7. Solve \(a_n = 2a_{n-1} - a_{n-2} + 2^n \) with \(a_0 = 1 \) and \(a_1 = 2 \).

8. If \(\varphi = \frac{1+\sqrt{5}}{2} \), find \(-\frac{1}{\varphi} \). Then, find \(1 - \varphi \). Be amazed.