Recurrences, Part 3

Troy Vasiga

Centre for Education in Mathematics and Computing
Faculty of Mathematics, University of Waterloo

cemc.uwaterloo.ca
Outline

• Selected solutions to problems from last week
• L-systems
• Examples of L-systems
• Prouhet-Thue-Morse sequence
• Other definitions of PTM
• Morphisms
• Squares, cubes and overlaps
• Summary
Use the Master Theorem to find the asymptotic running time for the recurrence

\[T(n) = 4T(n/2) + n. \]

Solution:
We have \(a = 4 \), \(b = 2 \) and \(f(n) = n \).
Solution to Problem 5

Use the Master Theorem to find the asymptotic running time for the recurrence

$$T(n) = 4T(n/2) + n.$$

Solution:

We have $a = 4$, $b = 2$ and $f(n) = n$.

We calculate $n^{\log_b a} = n^{\log_2 4} = n^2$.

Thus, we are in case 1 of the Master Theorem, and thus $T(n) = \Theta(n^2)$.

WWW.CEMC.UWATERLOO.CA | The CENTRE for EDUCATION in MATHEMATICS and COMPUTING
Solution to Problem 5

Use the Master Theorem to find the asymptotic running time for the recurrence

\[T(n) = 4T(n/2) + n. \]

Solution:
We have \(a = 4, \ b = 2 \) and \(f(n) = n. \)

We calculate \(n^{\log_b a} = n^{\log_2 4} = n^2. \)

Then, \(f(n) = n \in O(n^{2-\epsilon}) \) for \(\epsilon = 0.9 \) (for instance).
Solution to Problem 5

Use the Master Theorem to find the asymptotic running time for the recurrence

\[T(n) = 4T(n/2) + n. \]

Solution:
We have \(a = 4 \), \(b = 2 \) and \(f(n) = n \).
We calculate \(n^{\log_b a} = n^{\log_2 4} = n^2 \).
Then, \(f(n) = n \in O(n^{2-\epsilon}) \) for \(\epsilon = 0.9 \) (for instance).
Thus, we are in case 1 of the Master Theorem, and thus \(T(n) = \Theta(n^{\log_b a}) = \Theta(n^2) \).
Solution to Problem 7

Use the Master Theorem to find the asymptotic running time for the recurrence

\[T(n) = 4T(n/2) + n^3. \]

Solution:
We have \(a = 4, \ b = 2 \) and \(f(n) = n^3 \).

We calculate \(n^{\log_b a} = n^{\log_2 4} = n^2 \).
Solution to Problem 7

Use the Master Theorem to find the asymptotic running time for the recurrence

\[T(n) = 4T(n/2) + n^3. \]

Solution:

We have \(a = 4, \ b = 2 \) and \(f(n) = n^3 \).

We calculate \(n^{\log_b a} = n^{\log_2 4} = n^2 \).

Then, \(f(n) = n^3 \in \Omega(n^{2+\epsilon}) \) for \(\epsilon = 1 \), for instance.
Solution to Problem 7

Use the Master Theorem to find the asymptotic running time for the recurrence

\[T(n) = 4T(n/2) + n^3. \]

Solution:

We have \(a = 4 \), \(b = 2 \) and \(f(n) = n^3 \).

We calculate \(n^{\log_b a} = n^{\log_2 4} = n^2 \).

Then, \(f(n) = n^3 \in \Omega(n^{3-\epsilon}) \) for \(\epsilon = 1 \), for instance.

Thus, we are in case 3 of the Master Theorem. We just need to verify that the second condition holds: that is, we need to show that

\[af \left(\frac{n}{b} \right) \leq cf(n) \]

for some fixed \(c \) for all \(n \) sufficiently large.
Solution to Problem 7 (continued)

Plugging in our constants and \(f(n) = n^3 \), we have to show:

\[
4 \left(\frac{n}{2} \right)^3 \leq cn^3.
\]
Solution to Problem 7 (continued)

Plugging in our constants and \(f(n) = n^3 \), we have to show:

\[
4 \left(\frac{n}{2} \right)^3 \leq cn^3.
\]

Pick \(c = 1 \) and then for \(n > 1 \), we have:

\[
\frac{n^3}{2} \leq cn^3.
\]
Plugging in our constants and $f(n) = n^3$, we have to show:

$$4 \left(\frac{n}{2} \right)^3 \leq cn^3.$$

Pick $c = 1$ and then for $n > 1$, we have:

$$\frac{n^3}{2} \leq cn^3.$$

Thus, by case 3 of the Master Theorem, $T(n) = \Theta(n^3)$.
Definition of an L-system

An L-system or Lindenmayer system is a parallel rewriting system.

By parallel, we mean we each step involves replacing every possible occurrence at the same time.

We also need to specify the starting condition/symbol.
Rewriting Rules

We use the rule

\[X \rightarrow Y \]

to mean “replace every occurrence of \(X \) with \(Y \).”

For example, if we have the rule \(X \rightarrow ABX \) and we have the current word:

\[ABXBAX \]

then the next word will be
Rewriting Rules

We use the rule

$$X \rightarrow Y$$

to mean “replace every occurrence of $$X$$ with $$Y.$$”

For example, if we have the rule $$X \rightarrow ABX$$ and we have the current word:

$$ABXBAX$$

then the next word will be

$$ABABXBAABX$$
What does this sequence do?

1. $A \rightarrow AB$
2. $B \rightarrow \epsilon$

(Here ϵ means “this disappears.”)

Start with $A \Rightarrow AB \Rightarrow AB \Rightarrow AB$
Not much

This just generates AB at the first step, which becomes AB after the second step, and so on.

So, this is just the word AB.
Not much

This just generates AB at the first step, which becomes AB after the second step, and so on.

So, this is just the word AB.

This indicates that AB is a *fixed point* of this recurrence.
Not much

This just generates AB at the first step, which becomes AB after the second step, and so on.

So, this is just the word AB.

This indicates that AB is a \textit{fixed point} of this recurrence.

Definition: A \textit{fixed point} of a function f is a value t such that $f(t) = t$.
Not much

This just generates AB at the first step, which becomes AB after the second step, and so on.

So, this is just the word AB.

This indicates that AB is a fixed point of this recurrence.

Definition: A fixed point of a function f is a value t such that $f(t) = t$.

Notice: if $f(t) = t$, then $f(f(t))$
Not much

This just generates AB at the first step, which becomes AB after the second step, and so on.

So, this is just the word AB.

This indicates that AB is a fixed point of this recurrence.

Definition: A fixed point of a function f is a value t such that $f(t) = t$.

Notice: if $f(t) = t$, then $f(f(t)) = f(t) = t$.

Not much

This just generates AB at the first step, which becomes AB after the second step, and so on.

So, this is just the word AB.

This indicates that AB is a fixed point of this recurrence.

Definition: A fixed point of a function f is a value t such that $f(t) = t$.

Notice: if $f(t) = t$, then $f(f(t)) = f(t) = t$,

Not much

This just generates AB at the first step, which becomes AB after the second step, and so on.

So, this is just the word AB.

This indicates that AB is a *fixed point* of this recurrence.

Definition: A *fixed point* of a function f is a value t such that $f(t) = t$.

Notice: if $f(t) = t$, then $f(f(t)) = f(t) = t$, which means $f^n(t) = f(f(\cdots f(t))\cdots) = t$.

What does this sequence do?

1. $A \rightarrow AB$

2. $B \rightarrow B$

Start with A
Infinitely more
Infinitely more

After n iterations of the rewriting rules, we have the word

$$AB^n = ABB \cdots B.$$
What does this sequence do?

1. $A \rightarrow B$
2. $B \rightarrow AB$

Start with A.

Hint: write out the first few terms and look at them.
Fibonacci

Notice the length.

Notice the ratio

\[\frac{|A|}{|B|} = \frac{f_{n-1}}{f_{n-2}} \leq \lim_{n \to \infty} = \varphi \]
What does this sequence do?

1. \(A \rightarrow ABA \)
2. \(B \rightarrow BBB \)

Start with \(A \).

\[\Rightarrow \ ABA \Rightarrow \ ABA \ BBA \ \ ABA \]

\[\Rightarrow \ ABA \ BBA \ ABA \ \ BBBBBBBBABA \ ABA \ BBA \]

\[\Rightarrow \ ABA \ BBA \ ABA \ \ BBBBBBBBBBBABA \]

Hint: draw a straight line.
Cantor Dust

How much of the line is removed?

\[
A = \text{line} \\
B = \text{no line}
\]

\[
\frac{1}{3} + \frac{2}{9} + \frac{4}{27} + \cdots = \sum_{n=1}^{\infty} \frac{2^{n-1}}{3^n}
\]

\[
\frac{a}{1-r} = \frac{\frac{1}{3}}{1-\frac{2}{3}} = \frac{\frac{1}{3}}{\frac{1}{3}} = 1 = \frac{1}{3} \sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^{n-1}
\]

\[
\leadsto \frac{2}{9} < \frac{1}{4} < \frac{1}{3}
\]

What about the number \(\frac{1}{4} \) for instance?
What does this sequence do?

1. $X \rightarrow X + YF$
2. $Y \rightarrow FX - Y$

Start with FX.

\[FX + YF \]
\[FX + YF + FX - YF \]
\[FX + YF + FX - YF + FX + YF - FX - YF \]

\[F + F + F - F + F + F - F - F \]
Dragon Curve

Do the following things:

- F means move forward
- $+$ means turn clockwise 90°
- $-$ means turn counterclockwise 90°
Dragon Curve

Here are some steps:

\[F + F \]

\[F + F + F - F \]
Dragon Curve

Here are some steps:
Dragon Curve
Another L-system

Start with:

One rule:

\[F \rightarrow F + F - F + F \]
Another L-system

Start with:

\[F \rightarrow -F - F \]

One rule:

\[F \rightarrow F + F - -F + F \]

Let:

- \(F \): move forward
- \(+ \): move clockwise by \(\frac{\pi}{3} \)
- \(- \): move counterclockwise by \(\frac{\pi}{3} \)
Koch Snowflake
What does this sequence do?

1. 0 → 01
2. 1 → 10

Start 0.

⇒ 01
⇒ 0110
⇒ 01101001

⇒ 0110100110010110
Prouhet-Thue-Morse Sequence

It does lots of things.

Call the sequence $t = t_0 t_1 t_2 \ldots = 0 \, 1 \, 1 \, 0 \, 1 \, 0 \, 0 \, 1 \, \ldots$
Draw a picture

- If $t_n = 0$, turn by π
- If $t_n = 1$, move ahead one unit and then rotate counterclockwise by an angle of $\frac{\pi}{3}$.
Koch Curve
Another definition of the PTM Sequence

Write out all integers in base-2 (i.e., binary).

Define $s_2(x)$ to the sum of the digits in the base-2 representation of x.

\[
\begin{array}{cccccccccccc}
0 & 1 & 10 & 11 & 100 & 101 & 110 & 111 & 1000 & 1001 \\
\Downarrow & \Downarrow \\
0 & 1 & 1 & 0 & 1 & 2 & 2 & 3 & 1 & 2 \\
\Downarrow & \Downarrow \\
0 & 0 & 1 & 0 & 0
\end{array}
\]
Yet another definition of the PTM Sequence

Write the number, then flip the bits and rewrite it.

Define:

\[X_0 = 0 \]
\[X_{n+1} = X_n \bar{X}_n \]

where \(\bar{x} \) means change all 0's to 1's, and 1's to 0's.
Equivalent definitions

Prove that the last two definitions are equivalent. In other words, prove:

\[t_n = s_2(n) \mod 2 \]

Proof: Use induction.

Base case: \(n = 0 \).

Assume true for all \(n < n' \).

Let \(k \) be the integer such that \(2^k \leq n < 2^{k+1} \).
A *morphism* is a map h on strings that satisfies the identity

$$h(xy) = h(x)h(y)$$

for all strings x, y.
PTM morphism

Define the PTM morphism

\[\mu(0) = 01, \]

\[\mu(1) = 10. \]

Then

\[\mu(0) = 01 \]
PTM morphism

Define the PTM morphism

\[\mu(0) = 01, \]
\[\mu(1) = 10. \]

Then

\[\mu(0) = 01, \]
\[\mu^2(0) = \mu(\mu(0)) = 0110. \]
PTM morphism

Define the PTM morphism

\[\mu(0) = 01, \]
\[\mu(1) = 10. \]

Then

\[\mu(0) = 01 \]
\[\mu^2(0) = \mu(\mu(0)) = 0110 \]
\[\mu^3(0) = 01101001 \]
\[\mu^4(0) = 0110100110010110 \]
Fixed point

The fixed point of a morphism h beginning with a is:

$$h^\omega(a) = \lim_{m \to \infty} h^m(a).$$
Equivalent definition

Let’s prove $\mu^n(0) = X_n$.

Use mathematical induction.
Equivalent definition

Let’s prove $\mu^n(0) = X_n$.

Use mathematical induction.

Base case: $n = 0$. $\mu^0(0) = 0 = X_0$.
Equivalent definition

Let’s prove $\mu^n(0) = X_n$.

Use mathematical induction.

Base case: $n = 0$. $\mu^0(0) = 0 = X_0$.

Assume the result holds for $n = k$. That is, $\mu^k(0) = X_k$.
Equivalent definition

Let’s prove $\mu^n(0) = X_n$.

Use mathematical induction.

Base case: $n = 0$. $\mu^0(0) = 0 = X_0$.

Assume the result holds for $n = k$. That is, $\mu^k(0) = X_k$.

Prove true for $n = k + 1$.

$$\mu^{k+1}(0) =$$
Equivalent definition

Let's prove $\mu^n(0) = X_n$.

Use mathematical induction.

Base case: $n = 0$. $\mu^0(0) = 0 = X_0$.

Assume the result holds for $n = k$. That is, $\mu^k(0) = X_k$.

Prove true for $n = k + 1$.

$$\mu^{k+1}(0) = \mu^k(\mu(0))$$
Equivalent definition

Let’s prove $\mu^n(0) = X_n$.

Use mathematical induction.

Base case: $n = 0$. $\mu^0(0) = 0 = X_0$.

Assume the result holds for $n = k$. That is, $\mu^k(0) = X_k$.

Prove true for $n = k + 1$.

\[\mu^{k+1}(0) = \mu^k(\mu(0)) = X_{k+1} \]
Equivalent definition

Let’s prove $\mu^n(0) = X_n$.

Use mathematical induction.

Base case: $n = 0$. $\mu^0(0) = 0 = X_0$.

Assume the result holds for $n = k$. That is, $\mu^k(0) = X_k$.

Prove true for $n = k + 1$.

$$\mu^{k+1}(0) = \mu^k(\mu(0))$$
$$= \mu^k(01)$$
Equivalent definition

Let’s prove $\mu^n(0) = X_n$.

Use mathematical induction.

Base case: $n = 0$. $\mu^0(0) = 0 = X_0$.

Assume the result holds for $n = k$. That is, $\mu^k(0) = X_k$.

Prove true for $n = k + 1$.

\[
\mu^{k+1}(0) = \mu^k(\mu(0)) = \mu^k(01) = \ldots
\]
Equivalent definition

Let’s prove $\mu^n(0) = X_n$.

Use mathematical induction.

Base case: $n = 0$. $\mu^0(0) = 0 = X_0$.

Assume the result holds for $n = k$. That is, $\mu^k(0) = X_k$.

Prove true for $n = k + 1$.

$$\mu^{k+1}(0) = \mu^k(\mu(0))$$
$$= \mu^k(01)$$
$$= \mu^k(0)\mu^k(1)$$
Equivalent definition

Let’s prove \(\mu^n(0) = X_n \).

Use mathematical induction.

Base case: \(n = 0 \). \(\mu^0(0) = 0 = X_0 \).

Assume the result holds for \(n = k \). That is, \(\mu^k(0) = X_k \).

Prove true for \(n = k + 1 \).

\[
\begin{align*}
\mu^{k+1}(0) &= \mu^k(\mu(0)) \\
&= \mu^k(01) \\
&= \mu^k(0)\mu^k(1)
\end{align*}
\]
Equivalent definition

Let’s prove $\mu^n(0) = X_n$.

Use mathematical induction.

Base case: $n = 0$. $\mu^0(0) = 0 = X_0$.

Assume the result holds for $n = k$. That is, $\mu^k(0) = X_k$.

Prove true for $n = k + 1$.

$$\mu^{k+1}(0) = \mu^k(\mu(0))$$
$$= \mu^k(01)$$
$$= \mu^k(0)\mu^k(1)$$
$$= X_k \bar{X}_k$$
Equivalent definition

Let’s prove $\mu^n(0) = X_n$.

Use mathematical induction.

Base case: $n = 0$. $\mu^0(0) = 0 = X_0$.

Assume the result holds for $n = k$. That is, $\mu^k(0) = X_k$.

Prove true for $n = k + 1$.

\[
\begin{align*}
\mu^{k+1}(0) &= \mu^k(\mu(0)) \\
 &= \mu^k(01) \\
 &= \mu^k(0)\mu^k(1) \\
 &= X_kX_k \\
\end{align*}
\]
Equivalent definition

Let’s prove $\mu^n(0) = X_n$.

Use mathematical induction.

Base case: $n = 0$. $\mu^0(0) = 0 = X_0$.

Assume the result holds for $n = k$. That is, $\mu^k(0) = X_k$.

Prove true for $n = k + 1$.

$$
\mu^{k+1}(0) = \mu^k(\mu(0)) \\
= \mu^k(01) \\
= \mu^k(0)\mu^k(1) \\
= X_k \bar{X}_k \\
= X_{k+1}
$$
Overlap-free

A *square* is a word of the form xx.

A *cube* is a word of the form xxx.

An *overlap* is a word $axaxa$, with a single letter a and x being any word.

English word examples?
Overlap-free

A *square* is a word of the form xx.

A *cube* is a word of the form xxx.

An *overlap* is a word $axaxa$, with a single letter a and x being any word.

English word examples?

How does this relate to the Thue-Morse sequence?
What does this sequence converge to?

Consider the sequence:

\[
\begin{align*}
1 & \quad 1/2 & \quad 1/2 \\
2' & \quad 3/4' & \quad 5/6 \\
& \quad 7/8 & \quad 9/10
\end{align*}
\]

What does this converge to?
Proof

First, observe the limit is:

\[\Pi_{n \geq 0} \left(\frac{2n + 1}{2n + 2} \right)^{(-1)^{tn}} \]

Let:

\[P = \Pi_{n \geq 0} \left(\frac{2n + 1}{2n + 2} \right)^{(-1)^{tn}} \]

\[Q = \Pi_{n \geq 0} \left(\frac{2n}{2n + 1} \right)^{(-1)^{tn}} \]

Notice that

\[PQ = \frac{1}{2} \prod_{n \geq 1} \left(\frac{n}{n + 1} \right)^{(-1)^{tn}} \]
Proof

\[PQ = \frac{1}{2} \prod_{n \geq 1} \left(\frac{n}{n + 1} \right)^{(-1)^{tn}} \]

Rewrite, breaking over odd and even indices:

\[PQ = \frac{1}{2} \prod_{n \geq 0} \left(\frac{2n + 1}{2n + 2} \right)^{(-1)^{t2n+1}} \prod_{n \geq 1} \left(\frac{2n}{2n + 1} \right)^{(-1)^{tn}} \]

\[= \frac{1}{2} P^{-1} Q. \]

Thus, \(P^2 = \frac{1}{2} \).
Summary

- recursion is very natural
- proving results using recursion is powerful
- recursion has a self-contained, succinct form
- recursion is beautiful

\[\text{math} = \text{recursion} \]