Pythagorean Theorem

The Pythagorean theorem is an extremely popular theorem that is used a lot in the real world to relate the side lengths of right angled triangles. It was uncovered by a Greek mathematician Pythagorus. This theorem states:

\[a^2 + b^2 = c^2 \]

Where,

\[a^2 = a \times a \quad b^2 = b \times b \quad c^2 = c \times c \]

Remember that:

And that the longest side on the triangle, \(c \), is called the hypotenuse.

Applying Pythagorean Theorem

If \(a = 3 \) and \(b = 4 \). What is \(c \)?

We put 3 in for the value of \(a \), and 4 in for the value of \(b \), to get:

\[3^2 + 4^2 = c^2 \]
(3 \times 3) + (4 \times 4) = c^2
\[9 + 16 = c^2 \]
\[25 = c^2 \]
Now take the square root,
\[\sqrt{25} = c \]
\[5 = c \]

Note: Taking the square root of a number is doing the opposite for squaring a number. If we **square** a number we are multiplying it by itself. \(5^2 = 5 \times 5 = 25 \). Taking the square root means finding that number we multiplied by itself to get 25, so \(\sqrt{25} = 5 \).

On a triangle this would mean,

![Triangle Diagram](image)

Proofs

There are many cool ways to prove that \(a^2 + b^2 = c^2 \). One way we tried physically, another we saw visually and below are two more ways.

First

Draw three squares of different sizes, and have each of them touching by one corner like so:
The small square has a side length of \(a \), so it has an area of \(a^2 \).

The medium square has a side length of \(b \), so it has an area of \(b^2 \).

The large square has a side length of \(c \), so it has an area of \(c^2 \).

Keep in mind, we want to show that \(a^2 + b^2 = c^2 \). How is this shown below?

We can see that the three squares form a right angled triangle in the middle. So we can see that the sides of a right angled triangle relate by \(a^2 + b^2 = c^2 \).

Second

Note: For any two similar triangles, if two similar sides are the same length and the angle between two sides are the same in either triangle, then we can say the two triangles are the same.
Above we have four triangles positioned in a square, with a dark region in the middle.

We can see that all four triangles have equal sides a and b, and so the angles between a and b will be equal in all four triangles. This means we have four equal triangles, so the hypotenuse of these triangles will all be equal. Let’s say the hypotenuse has a length of c.

If we take the area of the dark region $= c \times c = c^2$

If we move over two triangle to make 2 rectangles out of the triangles, we end up with another two more dark regions:

1. one with area ____________________
2. another with ____________________

What do we see?
Pythagorean Triples

A Pythagorean triple is a set of 3 numbers that have perfect solutions to the Pythagorean Theorem. The easiest triple is:

\[3 \ 4 \ 5\]

We can take multiples of this to make more, like:

\[
\begin{align*}
6 & \ 8 & \ 10 \\
9 & \ 12 & \ 15 \\
12 & \ 16 & \ 20
\end{align*}
\]

But there are also other Pythagorean triples that aren’t multiples of the 3 4 5:

\[
\begin{align*}
5 & \ 12 & \ 13 \\
7 & \ 24 & \ 25 \\
9 & \ 40 & \ 41 \\
11 & \ 60 & \ 61
\end{align*}
\]

What can we notice?

1. ______________________
2. ______________________

\[
\begin{array}{ccccccc}
\hline
a & b & c & a^2 & \frac{a^2}{2} \\
\hline
3 & 4 & 5 & & \\
5 & 12 & 13 & & \\
7 & 24 & 25 & & \\
9 & 40 & 41 & & \\
11 & 60 & 61 & & \\
\hline
\end{array}
\]

Knowing this, how do we generate a Pythagorean triple whose first number is 13?
Problem Set

1. What is the value of c if:
 a) if $a = 17$ and $b = 144$
 b) if $a = 35$ and $b = 612$
 c) if $a = 8$ and $b = 15$
 d) if $a = 20$ and $b = 21$

2. Calculate the missing side length.
 a) [Image of triangle with sides 28 cm and 45 cm]
 b) [Image of triangle with sides 55 cm and 73 cm]

3. Find the triple that contains a first number of 23.

4. Which of the following is NOT a pythagorean triple?
 a) 19 180 181
 b) 35 612 613
 c) 40 76 86
 d) 12 35 37

5. Which of the following is a pythagorean triple?
 a) 6 13 14
 b) 20 21 29
 c) 7 13 15
 d) 10 16 19

6. If Brampton is 21 km north of Mississauga, and St Thomas is 220 km west of Mississauga, what is the distance between Brampton and St Thomas?

7. If the length of a rectangle is 16 cm long, and diagonal is 34, what is the width?

8. A man props a ladder of 65 m against a building so he can get to the roof. The distance from the foot of the ladder to the building is 33 m. How tall is the building?
9. A baseball diamond is a square with sides of 72 m. What is the distance between first base and third base?

10. Find the value of x.

 a)
 ![Image 108x601 to 249x673]

 b)
 ![Image 108x503 to 231x593]

 c)
 ![Image 213x191 to 427x353]

11. Find the length of AB.

 ![Image 551x756]

12. Find the area of the trapezoid below using all the information given.

 ![Image 108x388 to 220x496]
13. Given the rectangular prism below, find the length of the line BF.

14. Given the same rectangular prism below, find the area of the triangle within the prism, as formed by the lines CB, CG and GB.

15. A square-based pyramid has a height of 8 m and base area of 144 m². What is the length of the slant of the pyramid?

16. A semi-circle is half of a circle. Using three semi circles, to prove in another way that \(a^2 + b^2 = c^2 \). (Hint: the area of a semi-circle is \(\frac{\pi r^2}{2} \).)