Regular Languages: Properties, Extensions, Limits and Next Steps

Dr. Troy Vasiga
David R. Cheriton School of Computer Science
University of Waterloo
Outline

- Recap of some previous exercises
- Equivalency of DFA, NFA, λ-NFA, RE
- Minimizing a DFA
- Closure properties of Regular Languages
- A language which is not regular
- A very useful lemma: the pumping lemma
- Classifying the previous non-regular language
- Context-free grammars: examples
- Exercises
Recap of some previous exercises

Question 7: Speaking of threes, construct a FSA which accepts decimal numbers which are divisible by 3. Note that 0, 3, 21, 33960210 are divisible by 3. (HINT: You should need exactly 4 states to do this, and think about what it means to be divisible by 3). Try it on some numbers which are divisible by 3 (like 3 and 27) and other numbers which are not divisible by 3 (like 4 and 83).
Recap of some previous exercises

Question 12: Construct a FSA over the alphabet \(\Sigma = \{a, b, c\} \) which accepts words which contain an even number of a’s and an odd number of b’s. There are no restrictions on the number of c’s. You should verify that aabaacc, b and abacababc are accepted and that aaaacacac and bb are rejected. Hint: You need 4 states, and you should keep track of the parity of both a’s and b’s.
Recap of some previous exercises

Question 13: Construct the FSA for the following regular expression:

\[a^*bc^*|a(bc)^*|(abc)^* \]

(Hint: you should think about creating three distinct FSMs, for each part of the regular expression. Then, connect them using a \(\lambda \)-transition from the start state.)
Equivalency of DFA, NFA, λ-NFA, RE

NFA \rightarrow DFA: Subset construction

- start in the start state
- for each possible input, create a state from the set of “current” states
- finished when all transitions out of all states in NFA are covered
Equivalency of DFA, NFA, \(\lambda \)-NFA, RE

\(\lambda \)-NFA \(\rightarrow\) NFA: Shortcut removal

- take shortcuts of the form \(\lambda X \) (to just \(X \))
- pull back final states
- delete all \(\lambda \) transition
- remove dead states
Equivalency of DFA, NFA, λ-NFA, RE

RE $\rightarrow \lambda$-NFA: Use RE definition

$$(a|b|cc)^*(da|bd)^*$$

See Question 13 (i.e. break into parts)
Equivalency of DFA, NFA, λ-NFA, RE

DFA \rightarrow RE

Left as an exercise.
Minimizing a DFA

A neat idea from J. Brzozowski (retired Waterloo professor).

1. Reverse the edges of the DFA.
2. Convert this DFA to an NFA (using the construction outlined above).
3. Reverse the edges of this DFA.
4. Convert this NFA to a DFA.
5. This DFA is equivalent to the original DFA but is minimal (in the number of states).
Minimizing example

Question 15: Minimize the following DFA:
Closure properties of Regular Languages

A set is *closed under an operation* if applying the operation on any element in the set causes the result to still be in the set.

Example: The set of integers is closed under addition, subtraction and multiplication.

Example: The set of integers is *not* closed under division.

Regular languages are closed under the following operations:

- union
- concatenation
- Kleene star
- complementation
- intersection
A language which is not regular

Consider the set of words over $\Sigma = \{a, b\}$ which have an equal number of as and bs.

Example words:

$\lambda, ab, aabb, abab, a b b b b a a a$

A DFA for this language:
A very useful lemma: the pumping lemma

Theorem

Let L be an infinite regular language. Then there are strings x, y and z such that y \neq \lambda and xy^n z \in L for each n \geq 0.

Let’s try this on a simple language $L = \{a^k b^k\}$ (which is a subset of the language we saw earlier).
Context-free grammars: Examples

What about the set of words $L = \{a^k \ b^k\}$?
Classifying the previous non-regular language

Consider the set of words over $\Sigma = \{a, b\}$ which have an equal number of as and bs.
Context-free grammars: Examples

\[(a|b|cc)^*(da|bd)^*\]
Context-free grammars: Usage

We can use the context-free grammar to create the words.
Context-free grammars: Final notes

Why context-free?

Does it ever reject a word?
Exercises