Limits of Sequences

Brian Forrest

October 1, 2010
Consider \(\left\{ \frac{1}{n} \right\} \).
Consider \(\left\{ \frac{1}{n} \right\} \). As \(n \) gets larger and larger
Consider \(\{ \frac{1}{n} \} \). As \(n \) gets larger and larger
Consider \(\left\{ \frac{1}{n} \right\} \). As \(n \) gets larger and larger
Consider \(\{ \frac{1}{n} \} \). As \(n \) gets larger and larger
Consider $\{\frac{1}{n}\}$. As n gets larger and larger.
Consider \(\left\{ \frac{1}{n} \right\} \). As \(n \) gets larger and larger, the terms get closer and closer to \(r_p \). We want to call \(r_n \) the limit of the sequence \(\left\{ \frac{1}{n} \right\} \) as \(n \) goes to \(\infty \).
Consider \(\left\{ \frac{1}{n} \right\} \). As \(n \) gets larger and larger, the terms get closer and closer to \(r \). We want to call \(r \) the limit of the sequence \(\left\{ \frac{1}{n} \right\} \) as \(n \) goes to \(\infty \).
Consider \(\{\frac{1}{n}\} \). As \(n \) gets larger and larger and larger, the terms get closer and closer to \(r \). We want to call \(r \) the limit of the sequence \(\{\frac{1}{n}\} \) as \(n \) goes to \(\infty \).
Consider \(\left\{ \frac{1}{n} \right\} \). As \(n \) gets larger and larger
Consider \(\{ \frac{1}{n} \} \). As \(n \) gets larger and larger
Consider \(\left\{ \frac{1}{n} \right\} \). As \(n \) gets larger and larger
Consider \(\left\{ \frac{1}{n} \right\} \). As \(n \) gets larger and larger
Consider \(\left\{ \frac{1}{n} \right\} \). As \(n \) gets larger and larger.
Consider \(\left\{ \frac{1}{n} \right\} \). As \(n \) gets larger and larger
Consider \(\{ \frac{1}{n} \} \). As \(n \) gets larger and larger
Consider $\left\{ \frac{1}{n} \right\}$. As n gets larger and larger the terms get closer and closer to 0.
Consider $\left\{ \frac{1}{n} \right\}$. As n gets larger and larger the terms get closer and closer to 0.

We want to call 0, the limit of the sequence $\left\{ \frac{1}{n} \right\}$ as n goes to ∞.
Heuristic Definition:

We say the limit of the sequence \(\{a_n\} \) as \(n \to \infty \) if as \(n \) gets larger and larger, the terms of \(\{a_n\} \) get closer and closer to \(L \).

Question: What's wrong with this definition?
Heuristic Definition: We say the \(L \) is the limit of the sequence \(\{a_n\} \) as \(n \) goes to \(\infty \).
Heuristic Definition: We say the L is the *limit of the sequence* \(\{a_n\} \) as n goes to ∞ if as n gets larger and larger
Heuristic Definition: We say the L is the limit of the sequence $\{a_n\}$ as n goes to ∞ if as n gets larger and larger.
Heuristic Definition: We say the L is the limit of the sequence $\{a_n\}$ as n goes to ∞ if as n gets larger and larger
Heuristic Definition: We say the L is the limit of the sequence $\{a_n\}$ as n goes to ∞ if as n gets larger and larger
Heuristic Definition: We say the L is the limit of the sequence \(\{a_n\} \) as n goes to ∞ if as n gets larger and larger.
Heuristic Definition: We say the L is the limit of the sequence $\{a_n\}$ as n goes to ∞ if as n gets larger and larger.
Heuristic Definition: We say the L is the limit of the sequence $\{a_n\}$ as n goes to ∞ if as n gets larger and larger.
Heuristic Definition: We say the L is the limit of the sequence \(\{a_n\} \) as \(n \) goes to \(\infty \) if as \(n \) gets larger and larger
Heuristic Definition: We say the \(L \) is the \textit{limit of the sequence} \(\{a_n\} \) as \(n \) goes to \(\infty \) if as \(n \) gets larger and larger.
Heuristic Definition: We say the L is the limit of the sequence \{a_n\} as n goes to ∞ if as n gets larger and larger the terms of \{a_n\} get closer and closer to L.
Heuristic Definition: We say the L is the *limit of the sequence* \(\{a_n\} \) as n goes to ∞ if as n gets larger and larger the terms of \(\{a_n\} \) get closer and closer to L.

Question: What’s wrong with this definition?
Again, consider \(\left\{ \frac{1}{n} \right\} \).
Again, consider \(\left\{ \frac{1}{n} \right\} \). As \(n \) gets larger and larger
Again, consider \(\left\{ \frac{1}{n} \right\} \). As \(n \) gets larger and larger
Again, consider \(\left\{ \frac{1}{n} \right\} \). As \(n \) gets larger and larger...
Again, consider $\left\{ \frac{1}{n} \right\}$. As n gets larger and larger...
Again, consider \(\{ \frac{1}{n} \} \). As \(n \) gets larger and larger
Again, consider \(\left\{ \frac{1}{n} \right\} \). As \(n \) gets larger and larger the terms get closer and closer to 0.
Again, consider \(\left\{ \frac{1}{n} \right\} \). As \(n \) gets larger and larger the terms get closer and closer to 0. But they also get closer and closer to \(-1\).
Question:

What is it about \(r \) that makes us call it the limit of \(\{ \frac{1}{n} \} \) but we do not call \(-s \) the limit as well?
Question: What is it about 0 that makes us call it the limit of \(\left\{ \frac{1}{n} \right\} \) but we do not call \(-1\) the limit as well?
Question: What is it about 0 that makes us call it the limit of \(\{ \frac{1}{n} \} \) but we do not call \(-1\) the limit as well?

Answer:
Question: What is it about 0 that makes us call it the limit of \(\{\frac{1}{n}\} \) but we do not call \(-1\) the limit as well?

Answer: The terms of \(\{\frac{1}{n}\} \) approximate 0 as **closely as we would like** when \(n \) is large enough,
Question: What is it about 0 that makes us call it the limit of \(\{ \frac{1}{n} \} \) but we do not call \(-1\) the limit as well?

Answer: The terms of \(\{ \frac{1}{n} \} \) approximate 0 as closely as we would like when \(n \) is large enough, but they never even get within 1 unit of \(-1\).
Definition: *(New Heuristic Definition)*

We say that \(L \) is the limit of the sequence \(\{a_n\} \) as \(n \) goes to infinity if no matter what positive tolerance \(\epsilon > 0 \) we are given we can find a cutoff \(N \in \mathbb{N} \) such that the terms \(a_n \) approximate \(L \) with error less than \(\epsilon \) provided that \(n \geq N \).

Formal Definition:

We say that \(L \) is the limit of the sequence \(\{a_n\} \) as \(n \) goes to infinity if for every \(\epsilon > 0 \) there exists an \(N \in \mathbb{N} \) such that if \(n \geq N \) then \(|a_n - L| < \epsilon \).

In this case we write \(\lim_{n \to \infty} a_n = L \).
Definition of a limit

Definition: (New Heuristic Definition)

We say that \(L \) is the *limit* of the sequence \(\{a_n\} \) as \(n \) goes to infinity, if no matter what positive tolerance \(\epsilon \) we are given we can find a cutoff \(N \in \mathbb{N} \) such that the terms \(a_n \) approximate \(L \) with error less than \(\epsilon \) provided that \(n \geq N \).
Definition: (New Heuristic Definition)

We say that \(L \) is the limit of the sequence \(\{a_n\} \) as \(n \) goes to infinity, if no matter what positive tolerance \(\epsilon > 0 \) we are given,
Definition of a limit

Definition: (New Heuristic Definition)
We say that L is the *limit* of the sequence $\{a_n\}$ as n goes to infinity, if no matter what positive tolerance $\epsilon > 0$ we are given, we can find a cutoff $N \in \mathbb{N}$,
Definition: (New Heuristic Definition)

We say that L is the limit of the sequence $\{a_n\}$ as n goes to infinity, if no matter what positive tolerance $\epsilon > 0$ we are given, we can find a cutoff $N \in \mathbb{N}$, such that the terms a_n approximate L with error less than ϵ.

In this case we write $\lim_{n \to \infty} a_n = L$.

Brian Forrest

Limits of Sequences
Definition: (New Heuristic Definition)
We say that \(L \) is the \textit{limit} of the sequence \(\{a_n\} \) as \(n \) goes to infinity, if no matter what positive tolerance \(\epsilon > 0 \) we are given, we can find a cutoff \(N \in \mathbb{N} \), such that the terms \(a_n \) approximate \(L \) with \textbf{error} less than \(\epsilon \) provided that \(n \geq N \).
Definition: (New Heuristic Definition)
We say that L is the limit of the sequence $\{a_n\}$ as n goes to infinity, if no matter what positive tolerance $\epsilon > 0$ we are given, we can find a cutoff $N \in \mathbb{N}$, such that the terms a_n approximate L with error less than ϵ provided that $n \geq N$.

Definition: (Formal Definition)
Definition: (New Heuristic Definition)
We say that L is the limit of the sequence $\{a_n\}$ as n goes to infinity, if no matter what positive tolerance $\epsilon > 0$ we are given, we can find a cutoff $N \in \mathbb{N}$, such that the terms a_n approximate L with error less than ϵ provided that $n \geq N$.

Definition: (Formal Definition)
We say that L is the limit of the sequence $\{a_n\}$ as n goes to infinity,
Definition: (New Heuristic Definition)

We say that L is the limit of the sequence $\{a_n\}$ as n goes to infinity, if no matter what positive tolerance $\epsilon > 0$ we are given, we can find a cutoff $N \in \mathbb{N}$, such that the terms a_n approximate L with error less than ϵ provided that $n \geq N$.

Definition: (Formal Definition)

We say that L is the limit of the sequence $\{a_n\}$ as n goes to infinity, if for every $\epsilon > 0$
Definition: (New Heuristic Definition)
We say that L is the limit of the sequence \(\{a_n\} \) as n goes to infinity, if no matter what positive tolerance $\epsilon > 0$ we are given, we can find a cutoff $N \in \mathbb{N}$, such that the terms a_n approximate L with error less than ϵ provided that $n \geq N$.

Definition: (Formal Definition)
We say that L is the limit of the sequence \(\{a_n\} \) as n goes to infinity, if for every $\epsilon > 0$ there exists an $N \in \mathbb{N}$
Definition: (New Heuristic Definition)

We say that L is the limit of the sequence $\{a_n\}$ as n goes to infinity, if no matter what positive tolerance $\epsilon > 0$ we are given, we can find a cutoff $N \in \mathbb{N}$, such that the terms a_n approximate L with error less than ϵ provided that $n \geq N$.

Definition: (Formal Definition)

We say that L is the limit of the sequence $\{a_n\}$ as n goes to infinity, if for every $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that if $n \geq N$, then

$$|a_n - L| < \epsilon.$$
Definition: (New Heuristic Definition)

We say that L is the limit of the sequence $\{a_n\}$ as n goes to infinity, if no matter what positive tolerance $\epsilon > 0$ we are given, we can find a cutoff $N \in \mathbb{N}$, such that the terms a_n approximate L with error less than ϵ provided that $n \geq N$.

Definition: (Formal Definition)

We say that L is the limit of the sequence $\{a_n\}$ as n goes to infinity, if for every $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that if $n \geq N$, then

$$|a_n - L| < \epsilon.$$

In this case we write

$$\lim_{n \to \infty} a_n = L.$$
Definition of a limit:
Definition of a limit:

1. Identify L.

Given a smaller ϵ, repeat 3 with a larger N.

Specify the error ϵ. Find the cutoff N.
Definition of a limit:

1. Identify L.
2. Specify the error $\epsilon > 0$.
Definition of a limit:

1. Identify L.
2. Specify the error $\epsilon > 0$.
3. Find the cutoff N.
Definition of a limit:

1. Identify \(L \).
2. Specify the error \(\epsilon > 0 \).
3. Find the cutoff \(N \).
Definition of a limit:

1. Identify \(L \).
2. Specify the error \(\epsilon > 0 \).
3. Find the cutoff \(N \).
Definition of a limit:

1. Identify L.
2. Specify the error $\epsilon > 0$.
3. Find the cutoff N.
Definition of a limit:

1. Identify L.
2. Specify the error $\epsilon > 0$.
3. Find the cutoff N.
Definition of a limit:

1. Identify \(L \).
2. Specify the error \(\epsilon > 0 \).
3. Find the cutoff \(N \).
4. Given a smaller \(\epsilon \).
Definition of a limit:

1. Identify L.
2. Specify the error $\epsilon > 0$.
3. Find the cutoff N.
4. Given a smaller ϵ.
5. Repeat 3

Brian Forrest
Limits of Sequences
Definition of a limit:

1. Identify L.
2. Specify the error $\epsilon > 0$.
3. Find the cutoff N.
4. Given a smaller ϵ.
5. **Repeat 3**
Definition of a limit:

1. Identify L.
2. Specify the error $\epsilon > 0$.
3. Find the cutoff N.
4. Given a smaller ϵ.
5. Repeat 3 with a larger N_1.

Brian Forrest

Limits of Sequences
Definition of a limit:

1. Identify L.
2. Specify the error $\epsilon > 0$.
3. Find the cutoff N.
4. Given a smaller ϵ.
5. Repeat 3 with a larger N_1.

Brian Forrest

Limits of Sequences
Definition of a limit:

1. Identify L.
2. Specify the error $\epsilon > 0$.
3. Find the cutoff N.
4. Given a smaller ϵ.
5. **Repeat 3** with a larger N_1.

Brian Forrest
Limits of Sequences
Definition of a limit:

1. Identify L.
2. Specify the error $\epsilon > 0$.
3. Find the cutoff N.
4. Given a smaller ϵ.
5. Repeat 3 with a larger N_1.

Brian Forrest
Limits of Sequences
Definition of a limit:

1. Identify L.
2. Specify the error $\epsilon > 0$.
3. Find the cutoff N.
4. Given a smaller ϵ.
5. **Repeat 3** with a larger N_1.
Definition of a limit:

It is useful to look at how this works on the real line.

\[\text{L} \]

Assume \(\lim_{n \to \infty} a_n = L \).

We create an error band by moving \(\epsilon \) units to the left from \(L \) to \(L - \epsilon \), and then \(\epsilon \) units to the right from \(L \) to \(L + \epsilon \). This gives us \(L - \epsilon, L + \epsilon \) as the "target".

Not all terms in \(\{a_n\} \) must fall in \(L - \epsilon, L + \epsilon \).

We can find \(N \in \mathbb{N} \) such that \(n \geq N \Rightarrow a_n \in (L - \epsilon, L + \epsilon) \).
Definition of a limit:

It is useful to look at how this works on the real line.

Assume \(\lim_{n \to \infty} a_n = L \) and let \(\epsilon > 0 \).
Definition of a limit:

It is useful to look at how this works on the real line.

Assume \(\lim_{n \to \infty} a_n = L\) and let \(\epsilon > 0\). We create an error band by moving \(\epsilon\) units to the left from \(L\) to \(L - \epsilon\), and then \(\epsilon\) units to the right from \(L\) to \(L + \epsilon\). This gives us \(L - \epsilon, L + \epsilon\) as the "target".

Not all terms in \(\{a_n\}\) must fall in \(L - \epsilon, L + \epsilon\). We can find \(N \in \mathbb{N}\) such that \(n \geq N \Rightarrow a_n \in L - \epsilon, L + \epsilon\).
Definition of a limit:

It is useful to look at how this works on the real line.

Assume \(\lim_{n \to \infty} a_n = L \) and let \(\epsilon > 0 \).

We create an **error band** by moving \(\epsilon \) units to the left from \(L \) to \(L - \epsilon \), and then \(\epsilon \) units to the right from \(L \) to \(L + \epsilon \).
Definition of a limit:

It is useful to look at how this works on the real line.

Assume \(\lim_{n \to \infty} a_n = L \) and let \(\epsilon > 0 \).

We create an error band by moving \(\epsilon \) units to the left from \(L \) to \(L - \epsilon \), and then \(\epsilon \) units to the right from \(L \) to \(L + \epsilon \). This gives us \((L - \epsilon, L + \epsilon)\) as the "target".
Definition of a limit:

It is useful to look at how this works on the real line.

Assume \(\lim_{n \to \infty} a_n = L \) and let \(\epsilon > 0 \).

We create an error band by moving \(\epsilon \) units to the left from \(L \) to \(L - \epsilon \), and then \(\epsilon \) units to the right from \(L \) to \(L + \epsilon \). This gives us \((L - \epsilon, L + \epsilon)\) as the ”target”.

- Not all terms in \(\{a_n\} \) must fall in \((L - \epsilon, L + \epsilon)\).
Definition of a limit:

It is useful to look at how this works on the real line.

Assume \(\lim_{n \to \infty} a_n = L \) and let \(\epsilon > 0 \).

We create an error band by moving \(\epsilon \) units to the left from \(L \) to \(L - \epsilon \), and then \(\epsilon \) units to the right from \(L \) to \(L + \epsilon \). This gives us \((L - \epsilon, L + \epsilon) \) as the "target".

▶ Not all terms in \(\{a_n\} \) must fall in \((L - \epsilon, L + \epsilon) \).
Definition of a limit:

It is useful to look at how this works on the real line.

Assume \(\lim_{n \to \infty} a_n = L \) and let \(\epsilon > 0 \).

We create an error band by moving \(\epsilon \) units to the left from \(L \) to \(L - \epsilon \), and then \(\epsilon \) units to the right from \(L \) to \(L + \epsilon \). This gives us \((L - \epsilon, L + \epsilon) \) as the "target".

- Not all terms in \(\{a_n\} \) must fall in \((L - \epsilon, L + \epsilon) \).
Definition of a limit:

It is useful to look at how this works on the real line.

Assume \(\lim_{n \to \infty} a_n = L \) and let \(\epsilon > 0 \).

We create an error band by moving \(\epsilon \) units to the left from \(L \) to \(L - \epsilon \), and then \(\epsilon \) units to the right from \(L \) to \(L + \epsilon \). This gives us \((L - \epsilon, L + \epsilon)\) as the "target".

- Not all terms in \(\{a_n\} \) must fall in \((L - \epsilon, L + \epsilon)\).
Definition of a limit:

It is useful to look at how this works on the real line.

Assume \(\lim_{n \to \infty} a_n = L \) and let \(\epsilon > 0 \).

We create an error band by moving \(\epsilon \) units to the left from \(L \) to \(L - \epsilon \), and then \(\epsilon \) units to the right from \(L \) to \(L + \epsilon \). This gives us \((L - \epsilon, L + \epsilon)\) as the ”target”.

- Not all terms in \(\{a_n\} \) must fall in \((L - \epsilon, L + \epsilon)\).
- We can find \(N \in \mathbb{N} \) such that \(n \geq N \Rightarrow a_n \in (L - \epsilon, L + \epsilon) \).
Definition of a limit:

It is useful to look at how this works on the real line.

Assume \(\lim_{n \to \infty} a_n = L \) and let \(\epsilon > 0 \).

We create an error band by moving \(\epsilon \) units to the left from \(L \) to \(L - \epsilon \), and then \(\epsilon \) units to the right from \(L \) to \(L + \epsilon \). This gives us \((L - \epsilon, L + \epsilon) \) as the "target".

- Not all terms in \(\{a_n\} \) must fall in \((L - \epsilon, L + \epsilon) \).
- We can find \(N \in \mathbb{N} \) such that \(n \geq N \Rightarrow a_n \in (L - \epsilon, L + \epsilon) \)
Definition of a limit:

It is useful to look at how this works on the real line.

Assume $\lim_{n \to \infty} a_n = L$ and let $\epsilon > 0$. We create an error band by moving ϵ units to the left from L to $L - \epsilon$, and then ϵ units to the right from L to $L + \epsilon$. This gives us $(L - \epsilon, L + \epsilon)$ as the "target".

- Not all terms in $\{a_n\}$ must fall in $(L - \epsilon, L + \epsilon)$.
- We can find $N \in \mathbb{N}$ such that $n \geq N \implies a_n \in (L - \epsilon, L + \epsilon)$
Definition of a limit:

It is useful to look at how this works on the real line.

Assume \(\lim_{n \to \infty} a_n = L \) and let \(\epsilon > 0 \).

We create an error band by moving \(\epsilon \) units to the left from \(L \) to \(L - \epsilon \), and then \(\epsilon \) units to the right from \(L \) to \(L + \epsilon \). This gives us \((L - \epsilon, L + \epsilon) \) as the "target".

- Not all terms in \(\{a_n\} \) must fall in \((L - \epsilon, L + \epsilon) \).
- We can find \(N \in \mathbb{N} \) such that \(n \geq N \Rightarrow a_n \in (L - \epsilon, L + \epsilon) \).
Definition of a limit:

It is useful to look at how this works on the real line.

Assume \(\lim_{n \to \infty} a_n = L \) and let \(\epsilon > 0 \).

We create an error band by moving \(\epsilon \) units to the left from \(L \) to \(L - \epsilon \), and then \(\epsilon \) units to the right from \(L \) to \(L + \epsilon \). This gives us \((L - \epsilon, L + \epsilon) \) as the "target".

- Not all terms in \(\{a_n\} \) must fall in \((L - \epsilon, L + \epsilon) \).
- We can find \(N \in \mathbb{N} \) such that \(n \geq N \Rightarrow a_n \in (L - \epsilon, L + \epsilon) \)
Definition of a limit:

It is useful to look at how this works on the real line.

Assume \(\lim_{n \to \infty} a_n = L \) and let \(\epsilon > 0 \).

We create an error band by moving \(\epsilon \) units to the left from \(L \) to \(L - \epsilon \), and then \(\epsilon \) units to the right from \(L \) to \(L + \epsilon \). This gives us \((L - \epsilon, L + \epsilon) \) as the "target".

- Not all terms in \(\{a_n\} \) must fall in \((L - \epsilon, L + \epsilon) \).
- We can find \(N \in \mathbb{N} \) such that \(n \geq N \Rightarrow a_n \in (L - \epsilon, L + \epsilon) \).
Definition of a limit:

Assume that
\[\lim_{n \to \infty} a_n = L \in (a, b). \]
Definition of a limit:

Assume that
\[\lim_{n \to \infty} a_n = L \in (a, b). \]

Choose
\[\epsilon \leq \min\{L - a, \]

Brian Forrest
Limits of Sequences
Definition of a limit:

Assume that
\[\lim_{n \to \infty} a_n = L \in (a, b). \]
Choose
\[\epsilon \leq \min\{L - a, b - L\}. \]
Definition of a limit:

Assume that
\[
\lim_{n \to \infty} a_n = L \in (a, b).
\]

Choose
\[
\epsilon \leq \min\{L - a, b - L\}.
\]

Then
\[
(L - \epsilon, L + \epsilon) \subseteq (a, b).
\]
Definition of a limit:

Assume that
\[\lim_{n \to \infty} a_n = L \in (a, b). \]
Choose
\[\epsilon \leq \min\{L - a, b - L\}. \]

Then
\[(L - \epsilon, L + \epsilon) \subseteq (a, b). \]

If \(n \) is large enough, then \(a_n \in (L - \epsilon, L + \epsilon) \)
Definition of a limit:

Assume that
\[\lim_{n \to \infty} a_n = L \in (a, b). \]

Choose
\[\epsilon \leq \min\{L - a, b - L\}. \]

Then
\[(L - \epsilon, L + \epsilon) \subseteq (a, b). \]

If \(n \) is large enough, then \(a_n \in (L - \epsilon, L + \epsilon) \) and hence
\[a_n \in (a, b). \]
Summary:

The following statements can all be viewed as being equivalent:
Summary:

The following statements can all be viewed as being equivalent:

1. \(\lim_{n \to \infty} a_n = L. \)
Summary:

The following statements can all be viewed as being equivalent:

1. \(\lim_{n \to \infty} a_n = L \).
2. Every interval \((L - \epsilon, L + \epsilon)\) contains a tail of \(\{a_n\}\).

Changing finitely many terms in \(\{a_n\}\) does not affect convergence.
Summary:

The following statements can all be viewed as being equivalent:

1. \(\lim_{n \to \infty} a_n = L. \)
2. Every interval \((L - \epsilon, L + \epsilon)\) contains a tail of \(\{a_n\}\).
3. Every interval \((L - \epsilon, L + \epsilon)\) contains all but finitely many terms of \(\{a_n\}\).

Brian Forrest
Limits of Sequences
The following statements can all be viewed as being equivalent:

1. \(\lim_{n \to \infty} a_n = L \).
2. Every interval \((L - \epsilon, L + \epsilon)\) contains a tail of \(\{a_n\}\).
3. Every interval \((L - \epsilon, L + \epsilon)\) contains all but finitely many terms of \(\{a_n\}\).
4. Every interval \((a, b)\) containing \(L\) contains a tail of \(\{a_n\}\).
Summary:

The following statements can all be viewed as being equivalent:

1. \(\lim_{n \to \infty} a_n = L. \)
2. Every interval \((L - \epsilon, L + \epsilon)\) contains a tail of \(\{a_n\}\).
3. Every interval \((L - \epsilon, L + \epsilon)\) contains all but finitely many terms of \(\{a_n\}\).
4. Every interval \((a, b)\) containing \(L\) contains a tail of \(\{a_n\}\).
5. Every interval \((a, b)\) containing \(L\) contains all but finitely many terms of \(\{a_n\}\).
6. Changing finitely many terms in \(\{a_n\}\) does not affect convergence.