Definition of a limit

Recall:

Definition: (Formal Definition of a Limit:)

We say that L is the limit of the sequence $\{a_n\}$ as n goes to infinity,
Definition of a limit

Recall:

Definition: (Formal Definition of a Limit:)

We say that L is the limit of the sequence $\{a_n\}$ as n goes to infinity, if for every $\epsilon > 0$
Definition of a limit

Recall:

Definition: (Formal Definition of a Limit:)

We say that L is the limit of the sequence $\{a_n\}$ as n goes to infinity, if for every $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that if $n > N$, then $|a_n - L| < \epsilon$. In this case we write $\lim_{n \to \infty} a_n = L$. We may also say $\{a_n\}$ converges to L and write $a_n \to L$. If no such L exists, we say that $\{a_n\}$ diverges.
Definition of a limit

Recall:

Definition: (Formal Definition of a Limit:)

We say that L is the limit of the sequence $\{a_n\}$ as n goes to infinity, if for every $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that if $n > N$, then

$$|a_n - L| < \epsilon.$$
Recall:

Definition: (Formal Definition of a Limit:)
We say that L is the limit of the sequence $\{a_n\}$ as n goes to infinity, if for every $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that if $n > N$, then

$$|a_n - L| < \epsilon.$$

In this case we write

$$\lim_{{n \to \infty}} a_n = L.$$
Definition of a limit

Recall:

Definition: (Formal Definition of a Limit:)

We say that L is the limit of the sequence $\{a_n\}$ as n goes to infinity, if for every $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that if $n > N$, then

$$|a_n - L| < \epsilon.$$

In this case we write

$$\lim_{n \to \infty} a_n = L.$$

We may also say $\{a_n\}$ converges to L and write $a_n \to L$.
Definition of a limit

Recall:

Definition: (Formal Definition of a Limit:)
We say that \(L \) is the limit of the sequence \(\{a_n\} \) as \(n \) goes to infinity, if for every \(\epsilon > 0 \) there exists an \(N \in \mathbb{N} \) such that if \(n > N \), then

\[
| a_n - L | < \epsilon.
\]

In this case we write

\[
\lim_{n \to \infty} a_n = L.
\]

We may also say \(\{a_n\} \) converges to \(L \) and write \(a_n \to L \).

If no such \(L \) exists, we say that \(\{a_n\} \) diverges.
Example: Show that $\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0$.
Example: Show that \(\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0 \). Let \(\epsilon > 0 \).
Example: Show that \(\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0 \). Let \(\epsilon > 0 \).

\[\epsilon \quad \frac{1}{\epsilon^2} \quad x \quad \frac{1}{\epsilon^2} \]

\[x > \frac{1}{\epsilon^2} \]
Example: Show that \(\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0 \). Let \(\epsilon > 0 \).

\[
\epsilon^2 > \frac{1}{x}
\]
Example: Show that \(\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0 \). Let \(\epsilon > 0 \).

\[
x > \frac{1}{\epsilon^2} \Rightarrow \epsilon^2 > \frac{1}{x} \Rightarrow \epsilon > \frac{1}{\sqrt{x}}.
\]
Example: Show that \(\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0 \). Let \(\epsilon > 0 \).

- \(x > \frac{1}{\epsilon^2} \Rightarrow \epsilon^2 > \frac{1}{x} \Rightarrow \epsilon > \frac{1}{\sqrt{x}} \).
- If \(\frac{1}{\epsilon^2} < N \)
Example: Show that \(\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0 \). Let \(\epsilon > 0 \).

- If \(\frac{1}{\epsilon^2} < N \leq n \)

\[
\begin{align*}
x > \frac{1}{\epsilon^2} & \implies \epsilon^2 > \frac{1}{x} \implies \epsilon > \frac{1}{\sqrt{x}}.
\end{align*}
\]
Example: Show that \(\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0 \). Let \(\epsilon > 0 \).

\[x > \frac{1}{\epsilon^2} \Rightarrow \epsilon^2 > \frac{1}{x} \Rightarrow \epsilon > \frac{1}{\sqrt{x}}. \]

\[\text{If } \frac{1}{\epsilon^2} < N \leq n \Rightarrow \left| \frac{1}{\sqrt{n}} - 0 \right| < \epsilon. \]
Example:
Consider \((-1)^{n+1}\) = \{1, -1, 1, -1, \ldots\}.
Example:

Consider \((-1)^{n+1}\) = \{1, -1, 1, -1, \ldots\}.

Does \((-1)^{n+1}\) have a limit?
Example:
Consider \(\{(-1)^{n+1}\} = \{1, -1, 1, -1, \ldots\} \).
Does \(\{(-1)^{n+1}\} \) have a limit?

\[
\lim_{n \to \infty} \{(-1)^{n+1}\} = 1?
\]
Example:

Consider \(\{(-1)^{n+1}\} = \{1, -1, 1, -1, \ldots\}\).

Does \(\{(-1)^{n+1}\}\) have a limit?

Is \(\lim_{n \to \infty} \{(-1)^{n+1}\} = 1\)? Is \(\lim_{n \to \infty} \{(-1)^{n+1}\} = -1\)?
Example:
Consider \(\{(-1)^{n+1}\} = \{1, -1, 1, -1, \ldots\} \).

Does \(\{(-1)^{n+1}\} \) have a limit?

Is \(\lim_{n \to \infty} \{(-1)^{n+1}\} = 1 \)? Is \(\lim_{n \to \infty} \{(-1)^{n+1}\} = -1 \)?

Or both?
Example:
Consider \(\{ (-1)^{n+1} \} = \{1, -1, 1, -1, \ldots \} \).

Does \(\{ (-1)^{n+1} \} \) have a limit?

Is \(\lim_{n \to \infty} \{ (-1)^{n+1} \} = 1 \)? Is \(\lim_{n \to \infty} \{ (-1)^{n+1} \} = -1 \)?

Or both?

Answer: Assume \(\lim_{n \to \infty} \{ (-1)^{n+1} \} = L \) and \(\epsilon = 0.5 \).
Example:

Consider \(\{(-1)^{n+1}\} = \{1, -1, 1, -1, \ldots\} \).

Does \(\{(-1)^{n+1}\} \) have a limit?

Is \(\lim_{n \to \infty} \{(-1)^{n+1}\} = 1? \) Is \(\lim_{n \to \infty} \{(-1)^{n+1}\} = -1? \)

Or both?

Answer: Assume \(\lim_{n \to \infty} \{(-1)^{n+1}\} = L \) and \(\epsilon = 0.5 \). Choose the cutoff \(N \) such that if \(n > N \) then

\[
| (-1)^{n+1} - L | < 0.5.
\]
Example

Pick $k_0 \in \mathbb{N}$ such that $2k_0 + 1 \geq N$.
Example

Pick $k_0 \in \mathbb{N}$ such that $2k_0 + 1 \geq N$. Then

$$a_{2k_0 + 1} = 1$$
Example

Pick $k_0 \in \mathbb{N}$ such that $2k_0 + 1 \geq N$. Then

$$a_{2k_0+1} = 1$$

$$\implies |1 - L| < 0.5$$
Example

Pick \(k_0 \in \mathbb{N} \) such that \(2k_0 + 1 \geq N \). Then

\[
a_{2k_0+1} = 1 \\
\implies |1 - L| < 0.5 \\
\implies L \in (0.5, 1.5)
\]
Example

Pick \(k_1 \in \mathbb{N} \) such that \(2k_1 \geq N \).
Example

Pick $k_1 \in \mathbb{N}$ such that $2k_1 \geq N$. Then

$$a_{2k_1} = -1$$
Pick $k_1 \in \mathbb{N}$ such that $2k_1 \geq N$. Then

$$a_{2k_1} = -1$$

$$\Rightarrow | -1 - L | < 0.5$$
Pick \(k_1 \in \mathbb{N} \) such that \(2k_1 \geq N \). Then

\[
\begin{align*}
a_{2k_1} &= -1 \\
\Rightarrow \quad | -1 - L | &< 0.5 \\
\Rightarrow \quad L &\in (-1.5, -0.5)
\end{align*}
\]
Pick $k_1 \in \mathbb{N}$ such that $2k_1 \geq N$. Then

$$a_{2k_1} = -1$$

$$\implies | -1 - L | < 0.5$$

$$\implies L \in (-1.5, -0.5)$$

Hence $L \in (-1.5, -0.5)$ and $L \in (0.5, 1.5)$ which is impossible.
Pick \(k_1 \in \mathbb{N} \) such that \(2k_1 \geq N \). Then
\[
a_{2k_1} = -1
\]
\[
\implies | -1 - L | < 0.5
\]
\[
\implies L \in (-1.5, -0.5)
\]
Hence \(L \in (-1.5, -0.5) \) and \(L \in (0.5, 1.5) \) which is impossible.
Therefore, \(\{(-1)^{n+1}\} \) has no limit!
Uniqueness of Limits

Problem: Can \(\{a_n\} \) have two different limits?
Uniqueness of Limits

Problem: Can \(\{a_n\} \) have two different limits?

Assume \(\lim_{n \to \infty} a_n = L \)
Uniqueness of Limits

Problem: Can \{a_n\} have two different limits?
Assume \(\lim_{n \to \infty} a_n = L \) and \(\lim_{n \to \infty} a_n = M \) with \(L < M \).
Problem: Can \(\{a_n\} \) have two different limits?

Assume \(\lim_{n \to \infty} a_n = L \) and \(\lim_{n \to \infty} a_n = M \) with \(L < M \). Consider \(\frac{M+L}{2} \).
Problem: Can \(\{a_n\} \) have two different limits?

Assume \(\lim_{n \to \infty} a_n = L \) and \(\lim_{n \to \infty} a_n = M \) with \(L < M \). Consider \(\frac{M+L}{2} \).
Uniqueness of Limits

Problem: Can \(\{a_n\} \) have two different limits?

Assume \(\lim_{n \to \infty} a_n = L \) and \(\lim_{n \to \infty} a_n = M \) with \(L < M \). Consider \(\frac{M+L}{2} \).

Let \(\epsilon = \frac{M-L}{2} \).
Problem: Can \(\{a_n\} \) have two different limits?

Assume \(\lim_{n \to \infty} a_n = L \) and \(\lim_{n \to \infty} a_n = M \) with \(L < M \). Consider \(\frac{M+L}{2} \).

Let \(\epsilon = \frac{M-L}{2} \).
Uniqueness of Limits

Problem: Can \(\{a_n\} \) have two different limits?

Assume \(\lim_{n \to \infty} a_n = L \) and \(\lim_{n \to \infty} a_n = M \) with \(L < M \). Consider \(\frac{M+L}{2} \).

Let \(\epsilon = \frac{M-L}{2} \).

Consider \(a_{n_0} \).
Problem: Can \(\{a_n\} \) have two different limits?

Assume \(\lim_{n \to \infty} a_n = L \) and \(\lim_{n \to \infty} a_n = M \) with \(L < M \). Consider \(\frac{M+L}{2} \).

Let \(\epsilon = \frac{M-L}{2} \).

Consider \(a_{n_0} \). If \(n_0 \) is large enough, then

\[
a_{n_0} \in (M - \epsilon, M + \epsilon)
\]
Problem: Can \(\{a_n\} \) have two different limits?

Assume \(\lim_{n \to \infty} a_n = L \) and \(\lim_{n \to \infty} a_n = M \) with \(L < M \). Consider \(\frac{M+L}{2} \).

Let \(\epsilon = \frac{M-L}{2} \).

Consider \(a_{n_0} \). If \(n_0 \) is large enough, then

\[
 a_{n_0} \in (M - \epsilon, M + \epsilon)
\]

and

\[
 a_{n_0} \in (L - \epsilon, L + \epsilon)
\]
Uniqueness of Limits

Problem: Can \(\{a_n\} \) have two different limits?

Assume \(\lim_{n \to \infty} a_n = L \) and \(\lim_{n \to \infty} a_n = M \) with \(L < M \). Consider \(\frac{M+L}{2} \).

Let \(\epsilon = \frac{M-L}{2} \).

Consider \(a_{n_0} \). If \(n_0 \) is large enough, then

\[
a_{n_0} \in (M - \epsilon, M + \epsilon)
\]

and

\[
a_{n_0} \in (L - \epsilon, L + \epsilon)
\]

which is impossible!
Uniqueness of Limits

Theorem: (Uniqueness of Limits)
Assume that \(\lim_{n \to \infty} a_n = L \) and \(\lim_{n \to \infty} a_n = M \). Then

\[
L = M.
\]
Often, it is difficult to tell if a sequence converges or if so, what its limit might be.
Often, it is difficult to tell if a sequence converges or if so, what its limit might be.

Example: Consider the recursively defined sequence

\[a_1 = 1 \quad a_{n+1} = \cos(a_n). \]
Often, it is difficult to tell if a sequence converges or if so, what its limit might be.

Example: Consider the recursively defined sequence

\[a_1 = 1 \quad a_{n+1} = \cos(a_n). \]

Does \(\{a_n\} \) converge?
Often, it is difficult to tell if a sequence converges or if so, what its limit might be.

Example: Consider the recursively defined sequence

\[a_1 = 1 \quad a_{n+1} = \cos(a_n). \]

Does \(\{a_n\} \) converge? If so, what is \(\lim_{n \to \infty} a_n \)?
Example

$$a_1 = 1,$$
Example

\[a_1 = 1, \]

\[\cos(x) \quad y = x \]
Example

\[a_1 = 1, \]

Graph showing \(y = \cos(x) \) and \(y = x \) intersecting at \(a_1 \)
Example

\[a_1 = 1, \]

\[0.7314040424, 0.7442373549, 0.7356047404, 0.7414250866, \\
0.7375068905, 0.7401473356, 0.7383692041, 0.7395672022, \\
0.7387603199, 0.7393038924, 0.7389377567, 0.7391843998, \ldots \]
Example

\[a_1 = 1, \]
\[a_2 = 0.5403023059, \]
Example

\[a_1 = 1, \]
\[a_2 = 0.5403023059, \]
Example

\[a_1 = 1, \]
\[a_2 = 0.5403023059, \]
Example

\[a_1 = 1, \]
\[a_2 = 0.5403023059, \]
\[a_3 = 0.8575532158, \]
Example

\[a_1 = 1, \]
\[a_2 = 0.5403023059, \]
\[a_3 = 0.8575532158, \]
\[a_4 = 0.6542897905, \]
Example

\[
\begin{align*}
a_1 &= 1, \\
a_2 &= 0.5403023059, \\
a_3 &= 0.8575532158, \\
a_4 &= 0.6542897905, \\
a_5 &= 0.7934803587, \\
\end{align*}
\]
Example

\[a_1 = 1, \]
\[a_2 = 0.5403023059, \]
\[a_3 = 0.8575532158, \]
\[a_4 = 0.6542897905, \]
\[a_5 = 0.7934803587, \]
\[a_6 = 0.7013687737, \]

\(y = x \)

\(\cos(x) \)
Example

\[\begin{align*}
 a_1 &= 1, \\
 a_2 &= 0.5403023059, \\
 a_3 &= 0.8575532158, \\
 a_4 &= 0.6542897905, \\
 a_5 &= 0.7934803587, \\
 a_6 &= 0.7013687737, \\
 a_7 &= 0.7639596829, \\
 a_8 &= 0.7221024250, \\
 a_9 &= 0.7504177618,
\end{align*} \]
Example

\[a_1 = 1, \]
\[a_2 = 0.5403023059, \]
\[a_3 = 0.8575532158, \]
\[a_4 = 0.6542897905, \]
\[a_5 = 0.7934803587, \]
\[a_6 = 0.7013687737, \]
\[a_7 = 0.7639596829, \]
\[a_8 = 0.7221024250, \]
\[a_9 = 0.7504177618, \]

0.7314040424, 0.7442373549, 0.7356047404, 0.7414250866,
0.7375068905, 0.7401473356, 0.7383692041, 0.7395672022,
0.7387603199, 0.7393038924, 0.7389377567, 0.7391843998,

\[\ldots \]
Example

\[a_{72} = 0.7390851332, \ a_{73} = 0.7390851332, \ a_{74} = 0.7390851332, \]
Example

\[a_{72} = 0.7390851332, \ a_{73} = 0.7390851332, \ a_{74} = 0.7390851332, \]
suggests that \(\{a_n\} \) converges to some \(L \).
Example

\[a_{72} = 0.7390851332, \ a_{73} = 0.7390851332, \ a_{74} = 0.7390851332, \]

suggests that \(\{a_n\} \) converges to some \(L \).

In fact,

\[\cos(L) = L. \]