Adventures in Computational Art: Moving Points Around

Craig S. Kaplan
School of Computer Science, University of Waterloo

FTLOMACS • 14 October 2017
Code is an artistic medium.
All technology is a means of enhancing human capabilities.

Computer graphics is an imagination amplifier.
for(int idx = 0; idx < N; ++idx) {
 ellipse(
 random(width), random(height),
 10, 10);
}
\[|F| = \frac{G}{d^2} \]
\[|F| = \frac{G}{d^2} \]
In every time step:

Calculate all forces on points.
Use forces to update point velocities.
Use velocities to update point positions.

Daniel Shiffman,
The Nature of Code
natureofcode.com
\vec{v} = (v_x, v_y)
\[\vec{v}' = (-v_x, v_y) \]

\[\vec{v} = (v_x, v_y) \]
\[\vec{v} \cdot \vec{f} \]
$O(n^2)$
Voronoi Diagram
New (non-physical) simulation:

Construct Voronoi diagram.
Move each point to the centroid of its Voronoi region.
Repeat until points stop moving.

AKA Lloyd’s Method
Weighted Lloyd’s Method
Weighted Voronoi Stippling
[Secord 2002]
The Travelling Salesman Problem (TSP)
[Bosch and Hermann, 2004]
Area Voronoi Diagrams

[Hiller et al., 2003]
Thank you!

Craig S. Kaplan
csk@uwaterloo.ca
isoedral.ca
www.cgl.uwaterloo.ca/csk
@cs_kaplan