The CENTRE for EDUCATION in MATHEMATICS and COMPUTING
cemc.uwaterloo.ca
Fryer Contest
(Grade 9)
Wednesday, April 16, 2014
(in North America and South America)
Thursday, April 17, 2014
(outside of North America and South America)

© 2014 University of Waterloo

Do not open this booklet until instructed to do so.

Time: 75 minutes
Calculators are permitted

Number of questions: 4
Each question is worth 10 marks

Parts of each question can be of two types:
1. SHORT ANSWER parts indicated by •
 - worth 2 or 3 marks each
 - full marks given for a correct answer which is placed in the box
 - part marks awarded only if relevant work is shown in the space provided

2. FULL SOLUTION parts indicated by
 - worth the remainder of the 10 marks for the question
 - must be written in the appropriate location in the answer booklet
 - marks awarded for completeness, clarity, and style of presentation
 - a correct solution poorly presented will not earn full marks

WRITE ALL ANSWERS IN THE ANSWER BOOKLET PROVIDED.

- Extra paper for your finished solutions supplied by your supervising teacher must be inserted into your answer booklet. Write your name, school name, and question number on any inserted pages.
- Express calculations and answers as exact numbers such as \(\pi + 1 \) and \(\sqrt{2} \), etc., rather than as 4.14... or 1.41..., except where otherwise indicated.

Do not discuss the problems or solutions from this contest online for the next 48 hours.

The name, grade, school and location of some top-scoring students will be published on our Web site, http://www.cemc.uwaterloo.ca. In addition, the name, grade, school and location, and score of some top-scoring students may be shared with other mathematical organizations for other recognition opportunities.
1. (a) The positive integers from 1 to 99 are written in order next to each other to form the integer 123456789101112...9899. How many digits does this integer have?

(b) The positive integers from 1 to 199 are written in order next to each other to form the integer 123456789101112...198199. How many digits does this integer have?

(c) The positive integers from 1 to \(n \) are written in order next to each other. If the resulting integer has 1155 digits, determine \(n \).

(d) The positive integers from 1 to 1000 are written in order next to each other. Determine the 1358\(^{th} \) digit of the resulting integer.

2. (a) In \(\triangle ABC \), \(\angle ABC = 60^\circ \) and \(\angle ACB = 50^\circ \). What is the measure of \(\angle BAC \)?

(b) An angle bisector is a line segment that divides an angle into two equal angles. In \(\triangle ABC \), \(\angle ABC = 60^\circ \) and \(\angle ACB = 50^\circ \). If \(BD \) and \(CD \) are angle bisectors of \(\angle ABC \) and \(\angle ACB \), respectively, what is the measure of \(\angle BDC \)?

(c) Point \(S \) is inside \(\triangle PQR \) so that \(QS \) and \(RS \) are angle bisectors of \(\angle PQR \) and \(\angle PRQ \), respectively, with \(QS = RS \). If \(\angle QSR = 140^\circ \), determine with justification, the measure of \(\angle QPR \).

(d) In \(\triangle PQR \), \(QS \) and \(RS \) are angle bisectors of \(\angle PQR \) and \(\angle PRQ \), respectively, with \(QS = RS \) (as in part (c)). Explain why it is not possible that \(\angle QSR = 80^\circ \).
3. Triangle ABC begins with vertices $A(6, 9), B(0, 0), C(10, 0)$, as shown. Two players play a game using $\triangle ABC$. On each turn a player can move vertex A one unit, either to the left or down. The x- and y-coordinates of A cannot be made negative. The person who makes the area of $\triangle ABC$ equal to 25 wins the game.

(a) What is the area of $\triangle ABC$ before the first move in the game is made?

(b) Dexter and Ella play the game. After several moves have been made, vertex A is at $(2, 7)$. It is now Dexter’s turn to move. Explain how Ella can always win the game from this point.

(c) Faisal and Geoff play the game, with Faisal always going first. There is a winning strategy for one of these players; that is, by following the rules in a certain way, he can win the game every time no matter how the other player plays.

(i) Which one of the two players has a winning strategy?

(ii) Describe a winning strategy for this player.

(iii) Justify why this winning strategy described in (ii) always results in a win.

4. The set $A = \{1, 2\}$ has exactly four subsets: $\{\}$, $\{1\}$, $\{2\}$, and $\{1, 2\}$. The four subset sums of A are 0, 1, 2 and 3 respectively. The sum of the subset sums of A is $0 + 1 + 2 + 3 = 6$. Note that $\{\}$ is the empty set and $\{1, 2\}$ is the same as $\{2, 1\}$.

(a) The set $\{1, 2, 3\}$ has exactly eight subsets and therefore it has eight subset sums. List all eight subset sums of $\{1, 2, 3\}$.

(b) Determine, with justification, the sum of all of the subset sums of $\{1, 2, 3, 4, 5\}$.

(c) Determine, with justification, the sum of all of the subset sums of $\{1, 3, 4, 5, 7, 8, 12, 16\}$ that are divisible by 4.
For students...

Thank you for writing the 2014 Fryer Contest!
In 2013, more than 15000 students from around the world registered to write the Fryer, Galois and Hypatia Contests.

Encourage your teacher to register you for the Canadian Intermediate Mathematics Contest or the Canadian Senior Mathematics Contest, which will be written in November 2014.

Visit our website to find
- Free copies of past contests
- Workshops to help you prepare for future contests
- Information about our publications for mathematics enrichment and contest preparation

For teachers...

Visit our website to
- Obtain information about our 2014/2015 contests
- Learn about our face-to-face workshops and our resources
- Find your school contest results
- Subscribe to the Problem of the Week
- Read about our Master of Mathematics for Teachers program