

Problem of the Week
 Problem E and Solution
 Stained Glass

Problem

A stained glass window hanging is in the shape of a rectangle with a length of 8 cm and a width of 6 cm .

Rectangle $A B C D$ represents the window hanging with $A B=8$ and $B C=6$. The points E, F, G, and H are the midpoints of sides $A B, B C, C D$, and $A D$, respectively. The point J is the midpoint of line segment $E H$. Triangle $F G J$ is coloured blue. Determine the area of the blue triangle.

Solution

Solution 1

Since $A B C D$ is a rectangle and $A B=8$, it follows that $A E=E B=D G=G C=4$. Similarly, since $B C=6$, it follows that $B F=F C=A H=H D=3$.
Consider the four corner triangles, $\triangle H A E, \triangle E B F$, $\triangle F C G$, and $\triangle G D H$. Each of these triangles is a rightangled triangle with base 4 and height 3 . Therefore, the total area of these four triangles is equal to $4 \times \frac{4 \times 3}{2}=24$.

The length of the hypotenuse of each of the four corner triangles is equal to $\sqrt{3^{2}+4^{2}}=5$. Thus, $E F=F G=G H=E H=5$, so $E F G H$ is a rhombus. Thus $E H \| F G$. The area of rhombus $E F G H$ is equal to the area of rectangle $A B C D$ minus the area of the four corner triangles. Thus, the area of rhombus $E F G H$ is $8 \times 6-24=24$.
Let h be the perpendicular distance between $F G$ and $E H$. Then the area of rhombus $E F G H$ is $h \times F G$. Thus, $h \times 5=24$.
Triangle $F G J$ has base $F G$ and height h, so its area is equal to $\frac{h \times F G}{2}=\frac{h \times 5}{2}=\frac{24}{2}=12 \mathrm{~cm}^{2}$.

Solution 2

In this solution we will use analytic geometry and set the coordinates of D to $(0,0)$. Then $A(0,6)$, $B(8,6)$, and $C(8,0)$ are the other corners of the rectangle. The midpoints E, F, G, and H have coordinates $(4,6),(8,3),(4,0)$, and $(0,3)$, respectively. Then J has coordinates $(2,4.5)$. Let K have coordinates $(8,4.5)$, and L have coordinates $(2,0)$. Then $J K C L$ is a rectangle.

We can then calculate the area of $\triangle F G J$ as follows.

$$
\text { Area } \begin{aligned}
\triangle F G J & =\text { Area } J K C L-\text { Area } \triangle J K F-\text { Area } \triangle F C G-\text { Area } \triangle G L J \\
& =J K \times C K-\frac{J K \times K F}{2}-\frac{F C \times C G}{2}-\frac{G L \times L J}{2} \\
& =6 \times 4.5-\frac{6 \times 1.5}{2}-\frac{3 \times 4}{2}-\frac{2 \times 4.5}{2} \\
& =27-4.5-6-4.5 \\
& =12
\end{aligned}
$$

Therefore, the area of $\triangle F G J$ is equal to $12 \mathrm{~cm}^{2}$.

Solution 3

This solution also uses analytic geometry. As in Solution 2, set the coordinates of D to $(0,0)$. Then $A(0,6), B(8,6)$, and $C(8,0)$ are the other corners of the rectangle. The midpoints E, F, G, and H have coordinates $(4,6),(8,3),(4,0)$, and $(0,3)$, respectively. Then J has coordinates $(2,4.5)$.

The base of $\triangle F G J$ is equal to the length of $F G$. Since $\triangle F C G$ is a right-angled triangle, $F G=\sqrt{C F^{2}+C G^{2}}=\sqrt{3^{2}+4^{2}}=5$. Line segments $E H$ and $F G$ each have a slope of $\frac{3}{4}$, so it follows that they are parallel. Thus, the height of $\triangle F G J$ is equal to the perpendicular distance between $E H$ and $F G$.
The line passing through F and G has slope $\frac{3}{4}$. The line perpendicular to $F G$, passing through G has slope $-\frac{4}{3}$ and y-intercept $\frac{16}{3}$. Therefore, its equation is $y=-\frac{4}{3} x+\frac{16}{3}$.
The line passing through $E H$ has slope $\frac{3}{4}$ and y-intercept 3 . Therefore, its equation is $y=\frac{3}{4} x+3$. We can then determine the point of intersection of $y=\frac{3}{4} x+3$ and $y=-\frac{4}{3} x+\frac{16}{3}$ by setting $\frac{3}{4} x+3=-\frac{4}{3} x+\frac{16}{3}$.
We multiply both sides of this equation by 12 and solve for x :

$$
\begin{aligned}
9 x+36 & =-16 x+64 \\
25 x & =28 \\
x & =\frac{28}{25}
\end{aligned}
$$

The y-coordinate for this intersection point is then $y=\frac{3}{4}\left(\frac{28}{25}\right)+3=\frac{21}{25}+3=\frac{96}{25}$.
Then, the height of $\triangle F G J$ is equal to the distance between $\left(\frac{28}{25}, \frac{96}{25}\right)$ and $G(4,0)$, which is

$$
\sqrt{\left(\frac{96}{25}-0\right)^{2}+\left(\frac{28}{25}-4\right)^{2}}=\sqrt{\frac{9216}{625}+\frac{5184}{625}}=\sqrt{\frac{14400}{625}}=\sqrt{\frac{576}{25}}=\frac{24}{5}
$$

Therefore, the area of $\triangle F G J$ is equal to $\frac{1}{2} \times 5 \times \frac{24}{5}=12 \mathrm{~cm}^{2}$.
Extension: Suppose $A B=p$ and $B C=q$, for some real numbers p and q. Determine the area of $\triangle F G J$.

