Problem of the Week
 Problem E and Solution
 Take a Seat 3

Problem

Twelve people are sitting, equally spaced, around a circular table. They each hold a card with a different integer on it. For any two people sitting beside each other, the positive difference between the integers on their cards is no more than 2 . The people holding the integers 5 and 6 are seated as shown. The person opposite the person holding the 6 is holding the integer x. What are the possible values of x ?

Solution

We will start with the card with the integer 6 . We are given that 5 is on one side of the 6 . Let a be the integer on the other side of the 6 .

Since each card contains a different integer and the positive difference between the integers on two cards beside each other is no more than 2 , then a must be 4 , 7 , or 8 . We will consider these three cases.

Case 1: $a=7$
Since the number on each card is different and we know that someone is holding a card with a 5 and someone is holding a card with a 6 , then the integer to the right of the 7 must be 8 or 9 .

Furthermore, every integer to the right of 7 must be greater than 7 . Similarly, the integer to left of 5 is either 3 or 4 . Furthermore, any integer to the left of 5 must be less than 5 .
Since x is both to the right of 7 and to the left of 5 , it must be both greater than 7 and less than 5 . This is not possible.

Therefore, when $a=7$, there is no solution for x.
Case 2: $a=4$
Since the number on each card is different and we know that someone is holding a card with a 5 and someone is holding a card with a 6 , then the integer to the right of 4 must be 3 or 2 . We will look at these two subcases.

- Case 2a: The card with integer 3 is to the right of the card with integer 4.

Notice then that every integer to the right of the 3 must be less than 3. Also the integer to the left of 5 must be 7 and every integer to left of the 7 must be greater than 7 . Since x is both to the right of 3 and to the left of 7 , it must be both greater than 7 and less than 3. This is not possible.
Therefore, when $a=4$ and the integer to the right of it is 3 , there is no solution for x.

- Case 2b: The card with integer 2 is to the right of the card with integer 4 .

Now, the integer to the left of 5 can be either 7 or 3 .
If the integer is 7 , then using a similar argument to that in Case 2a, there is no solution for x.
If the integer to the left of 5 is 3 , the only possible integer to the left of 3 is 1 . This means the only possible integer to the right of 2 is 0 . Which leads to the only possible integer to the left of 1 is -1 . Furthermore, the only possible integer to the right of 0 is -2 . Continuing in this manner, we get the table set up shown below.

From here, the only possible solution is $x=-5$.
Therefore, when $a=4$, the solution is $x=-5$.

Case 3: $a=8$
Since the number on each card is different and we know that someone is holding a card with a 6 , then the integer to right of the 8 must be 7,9 , or 10 . Furthermore, since someone is already holding a 5 and someone is already holding a 6 , every other integer to the the right of 8 must be 7 or greater.

The integer to the left of 5 is either 3,4 , or 7 . If it is 3 or 4 , then since someone is already holding the 5 and someone is already holding the 6 , every integer to the left of 5 must be less than 5 . Since x is both to the right of 8 and to the left of 5 , if there is a 3 or a 4 to the left of 5 , then x must be both 7 or greater and less than 5 . This is not possible.
Therefore, if a solution exists when $a=8$, then the integer to the left of 5 must be 7 . The integer to the left of 7 must be $5,6,8$, or 9 . Since the 5,6 , and 8 are already placed, then the only possible integer to the left of 7 is 9 . Similarly, the only possible integer to the right of 8 is 10. Thus, the integer to the left of 9 must be 11 . Continuing in this manner, we get the table set up shown below.

From here, the only possible solution is $x=15$.
Therefore, when $a=8$, the solution is $x=15$.
Therefore, the possible values for x are $x=-5$ or $x=15$.

