

Problem of the Week
 Problem D and Solution
 They're Blue

Problem

In rectangle $A B C D$, the length of side $A B$ is 7 m and the length of side $B C$ is 5 m . Four points, W, X, Y, and Z, lie on diagonal $B D$, dividing it into five equal segments. Triangles $A W X, A Y Z, C W X$, and $C Y Z$ are then painted blue, as shown. Determine the area of the painted region.

Solution

Solution 1

Using the formula for area of a triangle, area $=\frac{\text { base } \times \text { height }}{2}$, we have area $\triangle A B D=\frac{7 \times 5}{2}=\frac{35}{2} \mathrm{~m}^{2}$. The five triangles $\triangle A D W, \triangle A W X, \triangle A X Y, \triangle A Y Z$, and $\triangle A B Z$ have the same height, which is equal to the perpendicular distance between $B D$ and A. Since $D W=W X=X Y=Y Z=Z B$, it follows that the five triangles also have equal bases. Therefore, the area of each of these five triangles is equal to $\frac{1}{5}$ (area $\left.\triangle A B D\right)=\frac{1}{5}\left(\frac{35}{2}\right)=\frac{7}{2} \mathrm{~m}^{2}$. Similarly, the area of $\triangle B C D$ is equal to $\frac{7 \times 5}{2}=\frac{35}{2} \mathrm{~m}^{2}$. The five triangles $\triangle C D W, \triangle C W X, \triangle C X Y, \triangle C Y Z$, and $\triangle C B Z$ also have the same height and equal bases. Therefore, the area of each of these five triangles is equal to $\frac{1}{5}$ (area $\left.\triangle B C D\right)=\frac{1}{5}\left(\frac{35}{2}\right)=\frac{7}{2} \mathrm{~m}^{2}$. Therefore, the area of the painted region is $4\left(\frac{7}{2}\right)=14 \mathrm{~m}^{2}$.

Solution 2

Since $A B C D$ is a rectangle, $\angle D A B=90^{\circ}$, so $\triangle A B D$ is a right-angled triangle. We can then use the Pythagorean Theorem to calculate $B D^{2}=A B^{2}+A D^{2}=7^{2}+5^{2}=49+25=74$, and so $B D=\sqrt{74}$, since $B D>0$. Therefore, $D W=W X=X Y=Y Z=Z B=\frac{1}{5}(B D)=\frac{1}{5} \sqrt{74}$. Using the formula for area of a triangle, area $=\frac{\text { base } \times \text { height }}{2}$, we have area $\triangle A B D=\frac{7 \times 5}{2}=\frac{35}{2} \mathrm{~m}^{2}$. Let's treat $B D=\sqrt{74}$ as the base of $\triangle A B D$ and let h be the corresponding height. Since the area of $\triangle A B D$ is $\frac{35}{2}$, then we have $\frac{\sqrt{74} \times h}{2}=\frac{35}{2}$ and so $\sqrt{74} \times h=35$, thus $h=\frac{35}{\sqrt{74}}$.
$\triangle A W X$ and $\triangle A Y Z$ both have height $h=\frac{35}{\sqrt{74}}$ and base $\frac{\sqrt{74}}{5}$, so
area $\triangle A W X=$ area $\triangle A Y Z=\frac{1}{2}\left(\frac{\sqrt{74}}{5}\right)\left(\frac{35}{\sqrt{74}}\right)=\frac{7}{2} \mathrm{~m}^{2}$.
Similarly, $\triangle C W X$ and $\triangle C Y Z$ both have height $h=\frac{35}{\sqrt{74}}$ and base $\frac{\sqrt{74}}{5}$, so area $\triangle C W X=$ area $\triangle C Y Z=\frac{1}{2}\left(\frac{\sqrt{74}}{5}\right)\left(\frac{35}{\sqrt{74}}\right)=\frac{7}{2} \mathrm{~m}^{2}$.
Therefore, the area of the painted region is $4\left(\frac{7}{2}\right)=14 \mathrm{~m}^{2}$.

