Problem of the Week Problem D and Solution
 Take a Seat 2

Problem

Twelve people are seated, equally spaced, around a circular table. They each hold a card with different integer on it. For any two people sitting beside each other, the positive difference between the integers on their cards is no more than 2 . The people holding the integers 3,4 , and 8 are seated as shown. The person opposite the person holding 8 is holding the integer x. What are the possible values of x ?

Solution

Let a represent the integer on the card between the card numbered 4 and the card numbered 8 , and let b and c represent the integers on the cards between the card numbered 8 and the card numbered 3 , as shown in the diagram.

The integer 6 is the only integer that is within 2 of both 4 and 8 . Therefore, $a=6$. Now, b can be either 7,9 , or 10 . (We cannot have $b=6$ since each person has a card with a different integer on it.) If $b=9$ or $b=10$, then for c there is no integer that is within 2 of b and 3 . Therefore, $b=7$. Furthermore, the integer 5 is the only integer that is within 2 of both 3 and 7. Therefore, $c=5$.

Next, we again consider the card numbered 4. The possible card numbers for its neighbours are $2,3,5$, and 6 . It is already beside the card numbered 6 , and the integers 3 and 5 are on cards that are not beside the card numbered 4 . Therefore, the card on the other side of the card numbered 4 must be numbered 2 .

Next, we again consider the card numbered 3. The possible card numbers for its neighbours are $1,2,4$, and 5 . It is already beside the card numbered 5 , and the integers 2 and 4 are on cards that are not beside the card numbered 3. Therefore, the card on the other side of the card numbered 3 must be numbered 1 .

We continue in this way to determine that the other card beside the card numbered 2 must be numbered 0 . Then, the other card beside the card numbered 1 must be numbered -1 . Then, the other card beside the card numbered 0 must be numbered -2 .

Finally, the possible card numbers for the neighbours of the card numbered -2 are $0,-1,-3$, and -4 . Also, the possible card numbers for the neighbours of the card numbered -1 are 1,0 , -2 , and -3 . Thus, since x is a neighbour of both the card numbered -2 and the card numbered -1 , we must have $x=0$ or $x=-3$. Since 0 is already on another card, then $x=-3$.

