# Problem of the Week <br> Problem C and Solution <br> Take a Seat 1 

## Problem

Twelve people are seated around a circular table. They each hold a card with a different integer from 1 to 12 on it. For any two people sitting beside each other, the positive difference between the integers on their cards is no more than 2 . The people with integers $1,3, a$, and $b$ are seated as shown.

What is the value of $a+b$ ?


## Solution

Because two integers that are beside each other must have a positive difference of at most 2, then the possible neighbours of 1 are 2 and 3 . Since 1 has exactly two neighbours, then 1 must be between 2 and 3 .
Next, consider 2. Its possible neighbours are 1, 3, and 4. The number 2 is already a neighbour of 1 and cannot be a neighbour of 3 (since 3 is on the other side of 1 ). Therefore, 2 is between 1 and 4 . This allows us to update the diagram as shown.


Continuing in this way, the possible neighbours of 3 are $1,2,4$, and 5 . The number 1 is already beside 3 , and the numbers 2 and 4 cannot be beside 3 . So 5 must be beside 3 .
The possible neighbours of 4 are $2,3,5$, and 6 . The number 2 is already beside 4 . Numbers 3 and 5 cannot be beside 4 . So 6 must be beside 4 .
Similarly, we know 7 will be beside 5 and 8 will be beside 6 . Thus, $a=8$. Continuing this way, we know 9 is beside 7,10 is beside 8,11 is beside 9 , and 12 is beside 10 . Thus,
 $b=12$. The completed circle is shown.
Therefore, $a+b=8+12=20$.

