
Problem of the Month
Problem 0: September 2021

Problem

Some friends are playing a game involving ten cards numbered 1 through 10. In part (a), Adina,
Budi, and Dewei are the players. In parts (b) and (c), Adina, Budi, Charlie, and Dewei are the
players. To play the game, each player other than Dewei chooses a card and shows it to all other
players, but no player looks at their own card. The game consists of a dialogue with the goal being
for all players holding a card to deduce the integer on their own card. In each part of this question,
the dialogue is given in the order the statements/questions occurred. No player is allowed ask
a question to which they already know the answer.

(a) Given the dialogue below, determine the integers on Adina’s and Budi’s cards.

1. (Adina) Is the integer on my card larger than the integer on Budi’s card?

2. (Dewei) No.

3. (Budi) I know the integer on my card.

4. (Adina) I know the integer on my card.

(b) After the dialogue below, Adina, Budi, and Charlie each know the integer on their own card.
Determine all possibilities for the integers on their cards.

1. (Adina) Is the sum of the integers on the cards a perfect square?

2. (Dewei) Yes.

(c) Given the dialogue below, determine all possibilities for the integers on the cards.

1. (Adina) Are the integers on any of the cards prime?

2. (Dewei) No.

3. (Budi) Is the sum of the integers on the cards prime?

4. (Dewei) Yes.

5. The three statements below occur simultaneously.

– (Adina) I do not know what integer is on my card.

– (Budi) I do not know what integer is on my card.

– (Charlie) I know what integer is on my card.

6. The two statements below occur simultaneously

– (Adina) I still do not know what integer is on my card.

– (Budi) I now know what integer is on my card.

7. (Adina) I now know what integer is on my card.



Hint

(a) Would this dialogue be possible if Adina saw a 3 on Budi’s card? Make sure you keep in
mind that no player will ever ask a question to which they already know the answer!

(b) To narrow the search for the answer, determine all possible sets of three distinct integers
between 1 and 10 inclusive that have a sum equal to a perfect square. Going from there, you
might want to explore what would happen for some particular configurations of the cards.
For instance, if the integers are 1, 2, and 6, would it be possible for all players to determine
the integer on their card from the dialogue given?

(c) The general strategy for this problem is similar to that in (b), but you will need to carefully
examine how the players would be able to eliminate possibilities based on what the other
players are able to infer. Experimenting with various configurations of the cards will likely
be helpful.



Problem of the Month
Solution to Problem 0: September 2021

(a) Denote the integer on Adina’s card by a and the integer on Budi’s card by b.

If b = 1 or b = 10, then Adina would know the answer to the question in the first line and
hence would not have asked it. Therefore, b 6= 1 and b 6= 10. Budi deduces this information
from the fact that Adina asked the question in the first line.

After Dewei answers “No” in the second line, Budi knows the following information: the
value of a, that b 6= 1, that b 6= 10, and that a < b. According to the third line of the
dialogue, Budi is able to determine the value of b from this information.

Since a < b and b < 10, it must be that a ≤ 8. If a < 8, then there is no way for Budi to
deduce the value of b from the information in the previous paragraph. Therefore, a = 8
and b = 9.

Although we have already deduced the integers on the two cards, it is worth pointing out
that the final line of the dialogue makes sense. Indeed, the fact that Budi determined
the value of b immediately after Adina’s question was answered tells Adina that a = 8.
Otherwise, as discussed in the previous paragraph, there is no way that Budi could have
determined the value of b after line 2 in the dialogue.

(b) The smallest possible sum of three different integers from 1 to 10 inclusive is 1 + 2 + 3 = 6
and the largest is 8 + 9 + 10 = 27. Therefore, 9, 16, and 25 are the only possible perfect
squares that can be equal to the sum of the integers on the cards. It is not difficult
to deduce that there are exactly 15 sets of three distinct integers from 1 to 10 having
a sum equal to a perfect square. One way to approach this is to examine possibilities
by the largest integer in the set. For instance, if 10 is the largest integer, then we seek
distinct positive integers x and y such that x + y + 10 is a perfect square. Since 10 > 9,
x + y + 10 > 9, so 16 and 25 are the only possibilities for this sum. This means either
x + y = 6 or x + y = 15. In the former case, x and y could be 1 and 5 or 2 and 4 in either
order (x and y need to be different, so x = y = 3 is not possible). In the latter case, x and
y equal to 6 and 9 or 7 and 8. Therefore, four of the sets of three distinct positive integers
are {1, 5, 10}, {2, 4, 10}, {6, 9, 10}, and {7, 8, 10}. Moreover, these four are the only such
sets that contain 10. All fifteen sets are listed below.

{1, 2, 6}, {1, 3, 5}, {1, 5, 10}, {1, 6, 9}, {1, 7, 8}, {2, 3, 4}, {2, 4, 10}, {2, 5, 9},

{2, 6, 8}, {3, 4, 9}, {3, 5, 8}, {3, 6, 7}, {4, 5, 7}, {6, 9, 10}, {7, 8, 10}
After the dialogue, each player knows that the sum of the integers on the three cards is a
perfect square. Each player can see two cards. If a player sees the integers 1 and 6, then
the integer on their own card could be 2 or 9, but they will not be able to tell which since
in either case the sum would be a perfect square. Since every player is able to deduce the
integer on their card once they learn that the sum is a perfect square, it is not possible for
1 and 6 to be two of the integers on the cards. Therefore, the sets {1, 2, 6} and {1, 6, 9}
can be eliminated as possibilities for the integers on the three cards.

�����{1, 2, 6}, {1, 3, 5}, {1, 5, 10},�����{1, 6, 9}, {1, 7, 8}, {2, 3, 4}, {2, 4, 10}, {2, 5, 9},
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{2, 6, 8}, {3, 4, 9}, {3, 5, 8}, {3, 6, 7}, {4, 5, 7}, {6, 9, 10}, {7, 8, 10}

If a player sees the integers 1 and 5, then the integer on their card could be 3 or 10, but
they cannot determine which of the two. Therefore, the three cards cannot be {1, 3, 5} or
{1, 5, 10}. Continuing with this sort of reasoning, all possibilities except {2, 5, 9}, {3, 6, 7},
and {4, 5, 7} can be eliminated from the list above.

If the integers are 2, 5, and 9, then one of the players sees the cards 2 and 5. The only
way for the sum to be a perfect square is for the integer on their card to be 9 (remember,
there is only one of each card so they cannot be holding a card with a 2 since they see a
2). Therefore, they know the integer on their card. The player who sees 2 and 9 knows
their card must have 5 on it since there is no other integer that can be added to 2 + 9 = 11
to get a perfect square. Finally, the player who sees 2 and 5 knows their card must have
9 on it by the same reasoning. Therefore, if the cards have 2, 5, and 9 on them (in any
order), then all three players will know the integer on their card as soon as they learn that
the sum is a perfect square.

By similar reasoning, if the integers are 3, 6, and 7 in any order, then each player will
know the integer on their card once they learn that the sum is a square, as well as if the
integers are 4, 5, and 7 in any order.

This gives a total of 3 × 6 = 18 configurations of the cards because there are 6 ways
to distribute the three cards among the three players for each of the three possible sets
of cards. However, it is possible that some of these configurations would lead to Adina
knowing the answer to her question immediately from the cards she can see. To finish the
argument, we will show that in any of these 18 configurations of the cards, Adina could
not possibly know just from the cards that she sees that the sum is or is not a perfect
square.

The possible pairs of integers that Adina can see are {2, 5}, {2, 9}, {5, 9}, {3, 6}, {3, 7},
{6, 7}, {4, 5}, {4, 7}, or {5, 7}. These are the two-element subsets of the three possible sets
of integers on the cards. In each of these nine cases, there is at least one possibility for the
integer on her card that would make the sum a perfect square. As well, in each of these
nine cases, if the integer on her card were 1, then the sum would not be a perfect square.
Therefore, if Adina sees any of these nine pairs of integers, there is no way for her to know
whether the sum is a perfect square. Therefore, all 18 configurations described above are
possible.

(c) Since none of the cards have a prime number on them, the possibilities for the integers on
the cards are 1, 4, 6, 8, 9, and 10. As well, the sum of the three integers is prime, which
rules out many possibilities. By carefully checking, one finds that there are exactly seven
sets of three distinct integers from the list 1, 4, 6, 8, 10 that have a prime sum. They are
listed below.

{1, 4, 6} {1, 4, 8} {1, 6, 10} {1, 8, 10} {4, 6, 9} {4, 9, 10} {6, 8, 9}

The first column in the table below contains the fifteen pairs of two distinct integers
selected from 1, 4, 6, 8, 9, and 10, which are the possible pairs of cards that a player
can see. The right column contains the corresponding number of three-element sets from
the list above of which the given two-element set is a subset. For example, the number 2
occurs to the right of {1, 4} because {1, 4} is a subset of {1, 4, 6} and {1, 4, 8} and none of
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the other sets.
{1, 4} 2
{4, 6} 2
{6, 9} 2
{1, 6} 2
{4, 8} 1
{6, 10} 1
{1, 8} 2
{4, 9} 2
{8, 9} 1
{1, 9} 0
{4, 10} 1
{8, 10} 1
{1, 10} 2
{6, 8} 1
{9, 10} 1

If a pair in the table above has a 1 next to it, then a player who sees those two integers
will know the integer on their card after the first four lines of dialogue. For instance, if a
player sees 4 and 8, they will know that their card is 1 since {1, 4, 8} is the only one of the
seven sets above that contains 4 and 8. On the other hand, if there is a 2 next to a set in
the table above, then a player who sees those two integers will not be able to determine
the integer on their card after the first four lines of dialogue. For instance, if a player sees
1 and 4, then the set of integers is either {1, 4, 6} or {1, 4, 8}, so a player who sees 1 and
4 knows that their card is 6 or 8, but cannot determine which.

We know that after the first four lines of dialogue, exactly one player is able to determine
the integer on their card. Suppose the set of integers on the cards is {4, 9, 10}. The two-
element subsets of this set are {4, 9}, {4, 10}, and {9, 10}. Both {4, 10} and {9, 10} have
a 1 next to them in the table above, so this means that if the set of integers is {4, 9, 10},
then two players would know the integer on their card after the first four lines of dialogue.
Therefore, the set of integers on the cards is not {4, 9, 10}. For similar reasons, the integers
cannot be {6, 8, 9}.

The two-element subsets of {1, 4, 6} all have a 2 next to them in the table above, which
means that if the set of integers is {1, 4, 6}, then none of the players would know the
integer on their card after the first four lines of dialogue. Therefore, the set of integers is
not {1, 4, 6}, and for the same reason, it is not {4, 6, 9}.

The three players will also deduce this information as soon as the statements in line 5 of
the dialogue are spoken. Thus, after these statements are made, all three players know
that the only possibilities for the set of integers on the cards are those below:

{1, 4, 8} {1, 6, 10} {1, 8, 10}

Furthermore, in each of these three cases, the integer on Charlie’s card must be 1 since
only the player with 1 on their card is able to deduce the integer on their card after the
first 5 lines of dialogue. For instance, if the cards are 1, 4, and 8, then the players who
have 4 and 8 on their card see the pairs of integers {1, 8} and {1, 4} respectively. Since
these sets each have a 2 next to them in the table above, these players cannot deduce the
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integer on their card from the first five lines of dialogue. However, The player whose card
has a 1 on it sees the set {4, 8}, which has a 1 next to it in the table above, so they can
deduce the integer on their card from the first five lines. By similar reasoning, if the cards
are {1, 6, 10} or {1, 8, 10}, then the player who is able to deduce the integer on their card
must be holding the card with 1 on it. Therefore, the integer on Charlie’s card is 1.

We have now narrowed down to 6 possibilities for how the cards are distributed:

Adina Budi Charlie
4 8 1
8 4 1
6 10 1
10 6 1
8 10 1
10 8 1

Since Charlie’s card has 1 on it, Adina and Budi each see a 1 and one of 4, 6, 8, and 10.
If Adina or Budi sees 1 and 4, then they know that the integer on their card is 8 since
{1, 4, 8} is the only possible remaining set that contains both 1 and 4. Similarly, if one of
them sees 1 and 6, then they know the integer on their card is 10. If they see 1 and 8,
then the integer on their card could be either 4 or 10, and if they see 1 and 10, then the
integer on their card could be either 6 or 8.

In the sixth line of dialogue, we find out that after line 5, Adina does not know the integer
on her card and Budi does know the integer on his card. This means Adina sees either 1
and 8 or 1 and 10, and Budi sees either 1 and 4 or 1 and 6. Of the six possibilities in the
table above, the only two that satisfy both of these conditions are

Adina Budi Charlie
4 8 1
6 10 1

Therefore, Charlie is holding the card with 1 on it, and either Adina’s card has 4 on it and
Budi’s has 8 on it, or Adina’s card has 6 on it and Budi’s has 10 on it.

In fact, both of these are possible. Denote by a the integer on Adina’s card, by b the
integer on Budi’s card, and by c the integer on Charlie’s card. We will verify that when
a = 4, b = 8, and c = 1 the dialogue makes sense. Verifying the case when a = 6, b = 10,
and c = 1 can be done similarly. Therefore, we assume that a = 4, b = 8, and c = 1.

1. Adina sees 8 and 1, neither of which is prime, so she can ask the question in line 1
since she does not know its answer.

3. Budi sees that c = 1 and a = 4 and knows that b is not prime. If b = 8, then a+ b+ c
is prime. If b = 10, then a + b + c is not prime. Therefore, Budi cannot know the
answer to the question in the third line before he asks it.

5. – Adina sees that b = 8 and c = 1, knows that a+b+c = a+9 is prime, and knows
a is not prime. Therefore, she knows that either a = 4 or a = 10, but cannot tell
which.

– Budi sees that a = 4 and c = 1, knows that b is not prime, and knows that
a + b + c = 5 + b is prime. Therefore, he knows that b = 6 or b = 8, but cannot
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tell which.

– Charlie sees a = 4 and b = 8, knows that c is one of 1, 6, 9, and 10, and knows
that a+ b+ c = 12 + c is prime. Since 12 + 6 = 18, 12 + 9 = 21, and 12 + 10 = 22
are all composite, Charlie knows at this point that c = 1.

6. – Budi knew that either b = 6 or b = 8 after he learned that a + b + c was prime.
He knows that Charlie knows the values of both a and b. If b = 6, then Charlie
would not have been able to determine whether c = 1 or c = 9 since the sums
a + b + c = 4 + 6 + 1 and a + b + c = 4 + 6 + 9 are both prime. Therefore, Budi
concludes that b = 8.

– Adina knows that a = 4 or a = 10 and she knows that Charlie knows that b = 8.
She also knows that Charlie is able to deduce the value of c from the information
revealed in the first four lines of dialogue. If a = 10, then Charlie could see an 8
and a 10 and would know that c was one of 1, 4, 6, and 9. The sum 8+10+1 = 19
is prime, but 8 + 10 + 4, 8 + 10 + 6, and 8 + 10 + 9 are all composite. This means
Charlie would be able to deduce that c = 1 if a = 10. Similarly (as previously
argued), if a = 4, then Charlie would be able to deduce that c = 1. Therefore,
Charlie’s ability to deduce the value of c after the first five lines does not tell
Adina the value of a. As well, whether Adina is holding 4 or 10, Budi would
not be able to tell whether he is holding 6 or 8 after the first five lines. This is
because 4 + 1 + 6, 4 + 1 + 8, 10 + 1 + 6, and 10 + 1 + 8 are all prime. Therefore,
Budi’s inability to determine the value of b after the first five lines of dialogue
does not tell Adina the value of a.

7. If a = 10 and b = 6 or b = 8, then Charlie would still be able to deduce that c = 1
after the first four lines of dialogue. However, Budi would not be able to deduce the
value of b after the first five lines of dialogue. Both of these facts follow from reasoning
similar to that which is above. Therefore, once Budi announces that he has deduced
the integer on his card, Adina knows that a 6= 10, so she knows that a = 4.

In conclusion, the complete set of possibilities for the integers on the cards are that Adina’s
card has 4, Budi’s card has 8, and Charlie’s card has 1, or Adina’s card has 6, Budi’s card
has 10, and Charlie’s card has 1.
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Problem of the Month
Problem 1: October 2021

Problem

Suppose a, b, and c are positive integers. In this problem, a non-negative solution to the equation
ax + by = c is a pair (x, y) = (u, v) of integers with u ≥ 0 and v ≥ 0 satisfying au + bv = c.
For example, (x, y) = (7, 0) and (x, y) = (3, 3) are non-negative solutions to 3x + 4y = 21, but
(x, y) = (−1, 6) is not.

(a) Determine all non-negative solutions to 5x + 8y = 120.

(b) Determine the largest positive integer c with the property that there is no non-negative
solution to 5x + 8y = c.

In parts (c), (d), and (e), a and b are assumed to be positive integers satisfying gcd(a, b) = 1.

(c) Determine the largest non-negative integer c with the property that there is no non-negative
solution to ax + by = c. The value of c should be expressed in terms of a and b.

(d) Determine the number of non-negative integers c for which there are exactly 2021 non-
negative solutions to ax+ by = c. As with part (c), the answer should be expressed in terms
of a and b.

(e) Suppose n ≥ 1 is an integer. Determine the sum of all non-negative integers c for which
there are exactly n nonnegative solutions to ax+ by = c. The answer should be expressed in
terms of a, b, and n.

Fact: You may find it useful that for integers a and b with gcd(a, b) = 1, there always exist integers
x and y such that ax + by = 1, though x and y may not be non-negative.



Hint

(a) An exhaustive search is a reasonable approach to this problem. It can be made easier if you
notice that x must be a multiple of 8 and that y must be a multiple of 5.

(b) Find a positive integer c with the property that ax+ by = c, ax+ by = c+ 1, ax+ by = c+ 2,
ax + by = c + 3, and ax + by = c + 4 all have non-negative solutions.

(c), (d), (e) As always, it is good to work out a few small examples to try to guess a pattern. It might
be useful to understand the set of all integer solutions to ax + by = c for fixed a, b, and c
with gcd(a, b) = 1. Once you do this, you might consider the integer solution (x, y) = (u, v)
with u negative but as close to 0 as possible.



Problem of the Month
Solution to Problem 1: October 2021

Several times throughout this solution, we will use the following fact: if gcd(m,n) = 1 and km
is a multiple of n, then k is a multiple of n. You might want to think about why this is true
before reading the solution.

(a) Suppose x and y are integers such that 5x + 8y = 120. Rearranging 5x + 8y = 120, we
have that 5x = 120− 8y, and after factoring 8 out of the right side, we get 5x = 8(15− y).
This means 5x is a multiple of 8. Using the fact given before the solution and the fact
that gcd(5, 8) = 1, we get that x is a multiple of 8. Similarly, 8y = 120− 5x = 5(24− x),
so y is a multiple of 5.

Now suppose x and y are non-negative integers such that 5x + 8y = 120. By the previous
paragraph, there are integers X ≥ 0 and Y ≥ 0 such that x = 8X and y = 5Y , which
means 5(8X) + 8(5Y ) = 120. Dividing by 40, we get X + Y = 3. Since X and Y are
non-negative integers, (X, Y ) must be one of the four pairs (0, 3), (1, 2), (2, 1), and (3, 0).

Since x = 8X and y = 5Y , this means the only possible non-negative solutions are

x = 0 x = 8 x = 16 x = 24

y = 15 y = 10 y = 5 y = 0

It is easy to check that each of these pairs is indeed a non-negative solution to 5x+8y = 120.

(b) Observe the following:

5(4) + 8(1) = 28

5(1) + 8(3) = 29

5(6) + 8(0) = 30

5(3) + 8(2) = 31

5(0) + 8(4) = 32

which shows that 5x + 8y = c has a non-negative solution when c = 28, c = 29, c = 30,
c = 31, and c = 32.

Next, observe that if 5x + 8y = c has a non-negative solution (x, y) = (u, v), then

5(u + 1) + 8v = 5u + 8v + 5

= c + 5,

so 5x+8y = c+5 has a non-negative solution, namely (x, y) = (u+1, v). Since 5x+8y = 28
has a non-negative solution, so does 5x + 8y = 28 + 5 = 33. Since 5x + 8y = 29 has a
non-negative solution, so does 5x + 8y = 29 + 5 = 34. Continuing in this way, we get
that 5x + 8y = c has a non-negative solution for c = 33, c = 34, c = 35, c = 36, and
c = 37. This process can be repeated to get that 5x + 8y = c has a non-negative solution
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for all c ≥ 28. It was important that we started with five consecutive values of c for which
5x + 8y = c has a non-negative solution.

To finish the solution to this part, we will argue that 5x + 8y = 27 has no non-negative
solution. Together with the fact that 5x + 8y = c has a non-negative solution for every
c ≥ 28, this will show that the answer to the question is c = 27.

Suppose 5x+8y = 27 for non-negative integers x and y. Rearranging, we have 8y = 27−5x.
Since x is a non-negative integer, 27−5x has a units digit of either 7 or 2. However, 27−5x
must be a non-negative multiple of 8 since it is equal to 8y. There are no multiples of 8
with a units digit of 7, and the smallest nonnegative multiple of 8 with a units digit of
2 is 32. Therefore, 27 − 5x cannot be a non-negative multiple of 8 if x is a non-negative
integer, so there are no non-negative solutions to 5x + 8y = 27.

Before moving on to the solutions to parts (c), (d), and (e), we will state two facts that will
come up in their solutions. The proofs of these facts can be found at the end of this document.

Fact 1: Suppose a and b are positive integers with gcd(a, b) = 1. For every integer c, the
equation ax + by = c has an integer solution.

Fact 2: Suppose a and b are positive integers with gcd(a, b) = 1, that c is an integer, and that
(x, y) = (u, v) is an integer solution to ax + by = c (which must exist by Fact 1). For every
integer k, the pair (u + bk, v − ak) is a solution to ax + by = c. In addition, this gives every
integer solution to ax + by = c.

Fact 2 says that finding all integer solutions to ax + by = c comes down to finding one integer
solution.

(c) In part (b), we saw that when a = 5 and b = 8, the answer is c = 27. It may take some
experimentation to guess a pattern. For example, if a = 4 and b = 3, you will find that
c = 5 is the smallest positive integer for which ax + by = c has no non-negative solution.
For another example, if a = 6 and b = 7, then c = 29 is the largest positive integer for
which ax + by = c has no non-negative solution. Even now, it might be tricky to notice
a pattern. If 1 is added to each of these largest values of c, one gets 28 for a = 5 and
b = 8, 6 for a = 4 and b = 3, and 30 for a = 6 and b = 7. These integers factor as
28 = 4 × 7, 6 = 3 × 2, and 30 = 5 × 6. With such an observation, you might guess
that the largest integer c for which there are no non-negative solutions to ax + by = c is
(a− 1)(b− 1)− 1 = ab− a− b. This would be a correct guess, and we will now prove it!

We will prove two statements.

• If a and b are positive integers with gcd(a, b) = 1 and ax+by = c has no non-negative
solution, then c ≤ ab− a− b.

• If a and b are positive integers with gcd(a, b) = 1, then ax + by = ab − a − b has no
non-negative solution.

The first bullet point implies that if c > ab − a − b, then ax + by = c does have a non-
negative solution. Therefore, the two statements above combine to imply that the answer
to the question is c = ab− a− b.
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Assume that c is a positive integer such that ax+ by = c has no non-negative solution. We

can rearrange ax+by = c to y = −a

b
x+

c

b
. This is the equation of a line with negative slope

and a positive y-intercept. Furthermore, the solutions to ax+by = c are exactly the lattice
points that lie on the line [A lattice point is a point in the plane whose coordinates are
both integers.]. By Fact 2, the integer solutions to ax+by = c, which are the lattice points
on the line, are exactly the ordered pairs of the form (u+bk, v−ak) where (x, y) = (u, v) is
any fixed integer solution and k takes every integer value. This means there are infinitely
many lattice points on the line and that their x-coordinates occur at x = u and every
integer multiple of b to the right and left of u. Likewise, their y-coordinates occur at v and
every integer multiple of a above and below v.

Thus, there must be a solution (x, y) = (u, v) with the property that u < 0 but u + b ≥ 0.

We will fix the solution (x, y) = (u, v) to be the lattice point on the line y = −a

b
x +

c

b
that is closest to the y-axis among those with a negative x-coordinate. Since u < 0 and u

is an integer, it must be that u ≤ −1. The diagram below depicts the line y = −a

b
x +

c

b
as well as the lattice point (u, v), and the next lattice point on the line moving from
(u, v) to the right. We are assuming there are no non-negative solutions, which means the
next lattice point cannot be in the first quadrant. However, it has a positive x-coordinate
by the assumption on (u, v), so it must appear below the x-axis in order to fail to be a
non-negative solution.

y = −a

b
x +

c

b

(u, v)

(u + b, v − a)

The next lattice point on the line moving to the right from (u, v) is (u + b, v − a). As
mentioned above, it must be in the fourth quadrant, which means v − a < 0. Since v
and a are both integers, so is v − a, which means v − a ≤ −1 which can be rearranged to
v ≤ a− 1.

We now have that au + bv = c as well as u ≤ −1 and v ≤ a− 1. Therefore,

c = au + bv

≤ a(−1) + b(a− 1)

= ab− a− b.

Therefore, if ax + by = c has no non-negative solutions, then c ≤ ab− a− b, as claimed.

For the second statement, suppose ax + by = ab− a− b for integers x and y. Rearranging
and factoring, we get a(x + 1) + b(y + 1) = ab. Since both a(x + 1) and ab are multiples
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of a, it must also be the case that b(y + 1) is a multiple of a. We are assuming that
gcd(a, b) = 1, so this means y + 1 is a multiple of a. Therefore, there is some integer Y so
that y + 1 = aY . By similar reasoning, there is an integer X such that x + 1 = bX.

Substituting y + 1 = aY and x + 1 = bX into a(x + 1) + b(y + 1) = ab, we get the
equation abX + abY = ab, and since ab must be positive, we can divide through by it to
get X + Y = 1. If the sum of two integers is 1, then one of them must be non-positive.
Therefore, either X ≤ 0 or Y ≤ 0. By how X and Y are defined, this means either
x + 1

b
≤ 0 or

y + 1

a
≤ 0. Since a and b are positive, this means either x + 1 ≤ 0 or

y + 1 ≤ 0, which implies that one of x and y is negative. Therefore, no integer solution to
ax + by = ab− a− b can be non-negative.

As discussed earlier, we have shown that ax+ by = c has a non-negative solution for every
integer c > ab−a−b and we have now shown that ax+by = ab−a−b has no non-negative
solution. Therefore, c = ab−a− b is the largest integer with the property that ax+ by = c
has no non-negative solution.

(d) We will show that for every positive integer n, there are exactly ab positive integers c for
which there are exactly n non-negative solutions to ax + by = c.

Suppose c has the property that there are exactly n non-negative solutions to ax+ by = c.
Following the reasoning in the solution to (c), we are interested in lattice points on the

line y = −a

b
x +

c

b
. As discussed earlier, there are infinitely many such lattice points and

we can choose (u, v) to be the lattice point on the line with the property that u < 0 and
u + b ≥ 0. The next n lattice points on the line moving to the right are those of the form
(u + kb, v − ka) where k ranges over the integers from 1 through n inclusive.

In order for there to be exactly n non-negative solutions, the first n lattice points on the
line to the right of (u, v) must be in the first quadrant. The diagram below is similar to
the one in the solution to part (c), but it depicts the situation for n = 5. The point (u, v)
is in the second quadrant, the next five moving along the line to the right are in the first
quadrant, and the next lattice point, (u+ (n+ 1)b, v− (n+ 1)a), is in the fourth quadrant.

y = −a

b
x +

c

b

(u, v)

(u + nb, v − na)

For (u + (n + 1)b, v − (n + 1)a) to be the first lattice point on the line to the right of
(u, v) that does not correspond to a non-negative solution, it must not be in the first
quadrant while (u + nb, v − na) must be in the first quadrant. Since k and b are positive,
the assumptions on (u, v) imply that (u + kb, v − ka) has a non-negative x-coordinate for
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every positive integer k. This means (u+ nv, v− na) has a non-negative y-coordinate and
(u+ (n+ 1)b, v− (n+ 1)a) has a negative y-coordinate. This leads to the two inequalities
v − na ≥ 0 and v − (n + 1)a < 0.

From our assumption about c, we have deduced that there is a nonnegative solution (u, v)
satisfying u and v satisfying u < 0, u + b ≥ 0, v − na ≥ 0, and v − (n + 1)a < 0. Since
all quantities are integers, we can replace the inequality u < 0 with u ≤ −1 and replace
v − (n + 1)a < 0 with v − (n + 1)a ≤ −1. Rearranging and combining these inequalities,
we have

−b ≤ u ≤ −1 (1)

na ≤ v ≤ (n + 1)a− 1 (2)

There are b integers u satisfying (1) and there are a integers v satisfying (2). We now have
that if c is such that there are exactly n non-negative solutions to ax + by = c, then there
are integers u and v satisfying (1) and (2) respectively, as well as au + bv = c.

Next, we suppose u satisfies (1) and v satisfies (2) and define c = au+ bv. The inequalities
(1) and (2) imply u < 0, u + b ≥ 0, v − na ≥ 0, and v − (n + 1)a < 0. Following the
reasoning from earlier in this part and in the solution to (c), this means ax + by = c has
exactly n non-negative solutions. Moreover, since n ≥ 1, we have

c = au + bv ≥ a(−b) + b(na) ≥ −ab + ab = 0

which says that c is non-negative. [It is worth remarking here that if n = 0, there are
still are exactly ab integers c for which there are n non-negative solutions to ax + by = c.
However, some of those integers will be negative. With n ≥ 1, all of the integers c for which
there are exactly n non-negative solutions to ax + by = c happen to be non-negative.]

We have that ax + by = c has exactly n non-negative solutions exactly when c takes the
form c = au + bv for some integers u satisfying (1) and v satisfying (2). Since there are b
choices for an integer u satisfying (1) and a choices for an integer v satisfying (2), there
are at most ab values of c that satisfy these conditions. To finish the argument, we must
show that we indeed get ab distinct integers when computing au + bv for every possible
choice of u satisfying (1) and v satisfying (2).

To do this, we will assume that u1 and u2 both satisfy (1), that v1 and v2 both satisfy (2),
and that au1+bv1 = au2+bv2 and deduce that u1 = u2 and v1 = v2. By possibly relabelling,
we can assume that u1 ≥ u2. With these assumptions, rearrange au1 + bv1 = au2 + bv2 to
get a(u1 − u2) = b(v2 − v1). This means a(u1 − u2) is a multiple of b. Since gcd(a, b) = 1,
u1 − u2 is a multiple of b. However, both u1 and u2 are between −b and −1 inclusive, so
their difference is smaller than b. We have that 0 ≤ u1 − u2 < b is a multiple of b. The
only possibility is that u1 − u2 = 0, or u1 = u2. This means b(v1 − v2) = 0 as well, and
since b 6= 0, v1 = v2.

The question asked for the answer with n = 2021, but we have shown that the answer is
ab for every integer n ≥ 1, which includes n = 2021.

(e) From the reasoning in (d), we know that the positive integers c with the property that
ax + by = c has exactly n non-negative solutions are exactly the integers of the form
au + bv = c where −b ≤ u ≤ −1 and na ≤ v ≤ (n + 1)a− 1.

5



Observe that there are exactly b possible values of u and a possible values of v, so we need
to add ab integers together.

We will do this by examining the u’s first, then the v’s. Observe that the sum contains
exactly a copies of au for every u satisfying −b ≤ u ≤ −1. Therefore, the “u part” of the
sum is

a(−a− 2a− 3a− 4a− · · · − (b− 1)a− ba)

= −a2(1 + 2 + 3 + · · ·+ (b− 1) + b)

= −a2b(b + 1)

2
.

By similar reasoning, the sum contains exactly b copies of the term bv for every v satisfying
na ≤ v ≤ (n + 1)a− 1 = na + a− 1. This means the “v part” of the sum is

b
(
bna + b(na + 1) + b(na + 2) + · · ·+ b(na + a− 2) + b(na + a− 1)

)
= b2

(
na + (na + 1) + (na + 2) + · · ·+ (na + a− 2) + (na + a− 1)

)
= b2

(
a(na) + 1 + 2 + 3 + · · ·+ (a− 2) + (a− 1)

)
= a2b2n + b2(1 + 2 + 3 + · · ·+ (a− 2) + (a− 1))

= a2b2n +
b2(a− 1)a

2

Therefore, the sum we seek is

a2b2n +
b2(a− 1)a

2
− a2b(b + 1)

2
=

ab

2
(2abn + b(a− 1)− a(b + 1))

=
ab

2
(2abn + ab− b− ab− a)

=
ab

2
(2abn− a− b) .

As promised, we now include proofs of Fact 1 and Fact 2, which were stated between the
solutions to parts (b) and (c). The proof of Fact 1 makes use of the fact that if gcd(a, b) = 1,
then ax + by = 1 always has an integer solution. This is a well known fact from number theory
that you may wish to look up.

Fact 1: Suppose a and b are positive integers with gcd(a, b) = 1. For every integer c, the
equation ax + by = c has an integer solution.

Proof. There are integers u′ and v′ such that au′ + bv′ = 1 (see above). Setting u = cu′ and
v = cv′, we have au + bv = acu′ + bcv′ = c(au′ + bv′) = c(1) = c.

Fact 2: Suppose a and b are positive integers with gcd(a, b) = 1, that c is an integer, and that
(x, y) = (u, v) is an integer solution to ax + by = c (which must exist by Fact 1). For every
integer k, the pair (u + bk, v − ak) is a solution to ax + by = c. In addition, this gives every
integer solution to ax + by = c.

6



Proof. To see that (u + bk, v − ak) is a solution, we can substitute and simplify:

a(u + bk) + b(v − ak) = au + abk + bv − abk

= au + bv

= c

since (x, y) = (u, v) is a solution to ax + by = c by assumption.

To see that every solution takes the form (u + bk, v − ak) is slightly trickier and requires use of
the fact that gcd(a, b) = 1.

Suppose (x, y) = (u′, v′) is also a solution to ax + by = c. This means au′ + bv′ = c. We also
have that au + bv = c, so we can subtract to get

(au + bv)− (au′ + bv′) = c− c = 0

which can be rearranged and factored to get a(u′ − u) = b(v − v′).

In the equation above, a, b, u′ − u, and v − v′ are all integers, and so we have that a(u′ − u) is
a multiple of b. Since gcd(a, b) = 1, u′ − u is a multiple of b, which means there is some integer
k such that u′ − u = bk. Substituting this into a(u′ − u) = b(v − v′) gives abk = b(v − v′), and
after cancelling b from both sides, we have v − v′ = ak.

Rearranging u′− u = bk and v− v′ = ak to u′ = u+ bk and v′ = v− ak shows that the solution
(x, y) = (u′, v′) takes the form (u + bk, v − ak), as claimed.
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Problem of the Month
Problem 2: November 2021

Problem

A lattice point is a point (a, b) in the plane with the property that a and b are both integers. In
this problem, we will say that a lattice point P (a, b) is visible if a > 0, b > 0, and the line segment
connecting P and the origin does not contain any lattice points other than P and the origin.

(a) How many lattice points P (a, b) with a ≤ 10 and b ≤ 10 are visible?

(b) Determine the number of integers b with b ≤ 50 for which P (a, b) is visible when

(i) a = 6

(ii) a = 18

(ii) a = 36.

(c) Determine how many points P (a, b) with a ≤ 50 and b ≤ 50 are visible. There is quite a bit
to do by hand, so you may want to use technology to help.

(d) Explain why the following equality is true:(
1− 1

22

)(
1− 1

32

)(
1− 1

52

)(
1− 1

72

)(
1− 1

112

)
· · · =

1

1 + 1
22

+ 1
32

+ 1
42

+ 1
52

+ 1
62

+ · · ·

The expressions on the left is the infinite product of all expressions of the form 1− 1

p2
where

p is prime.

(e) It is well known that the infinite sum

1 +
1

22
+

1

32
+

1

42
+

1

52
+

1

62
+ · · ·

is equal to
π2

6
. This fact has many proofs and is originally due to the mathematician Leonhard

Euler. You may wish to explore some of these proofs, but the intention in this problem is
for you to take the result for granted.

Interestingly, the probability that a randomly chosen point in the first quadrant not on the

axes is visible is
6

π2
. Explain why this is true.

Note: It is ok to be a bit suspicious of what we mean by “probability” when choosing from an
infinite set. Here is a way to think about what is meant in this problem: for a fixed positive
integer, n, it is possible to compute the probability that a point P (a, b) with 0 < a ≤ n and
0 < b ≤ n chosen randomly is visible. One might call this probability pn. The question in

(e), posed a bit more formally, might be “show that pn gets very close to
6

π2
as n gets large”.

If you have seen limits, you might want to formalize this further.



Hint

(a) In all parts of this problem, it will be useful to think about how P (a, b) being visible relates
to gcd(a, b).

(b) All three parts have the same answer.

(c) For positive integers u and v, the number of positive multiples of u that are no larger than v

is
⌊u
v

⌋
. You may need to look up the notation bxc. If you are solving this problem by hand,

you might want to first consider how many visible points there are of the form P (a, b) when
a is prime.

(d) What is the reciprocal of the sum of the geometric series 1 +
1

22
+

1

24
+

1

26
+

1

28
+ · · · ?

(e) What is the probability that two randomly chosen positive integers are both even? What is
the probability that two randomly chosen integers are both multiples of 3?



Problem of the Month
Solution to Problem 2: November 2021

(a) Suppose P (a, b) is visible. Since a > 0, we have that a 6= 0 and so the line segment

connecting P to the origin has equation y =
b

a
x. Now suppose m is a positive common

divisor of a and b. Then there are integers a′ and b′ with 0 < a′ ≤ a, 0 < b′ ≤ b, a = a′m,

and b = b′m. Then
b

a
a′ =

b′m

a′m
a′ = b′, so (a′, b′) is on the line segment connecting P to

the origin. Since P is visible, we cannot have a′ < a, so a′ = a which means m = 1.
We assumed that m was a positive common divisor of a and b and deduced that m = 1.
Therefore, if P (a, b) is visible, then gcd(a, b) = 1.

Now suppose P (a, b) is not visible. This means there is some lattice point (a′, b′) on y =
b

a
x

with 0 < a′ < a. This means b′ =
b

a
a′ which can be rearranged to ab′ = a′b. Since a,

b, a′, and b′ are all integers, we have that the integer a′b is a multiple of the integer a.
If gcd(a, b) = 1, then a′ is a multiple of a. However, this cannot happen since a′ < a.
Therefore, if P (a, b) is not visible, then gcd(a, b) 6= 1.

We have shown that a point P that is not on the axes is visible exactly when gcd(a, b) = 1.
Therefore, counting the visible points P (a, b) with 0 < a ≤ 10 and 0 < b ≤ 10 is the same
as counting ordered pairs (a, b) with 0 < a ≤ 10 and 0 < b ≤ 10 such that gcd(a, b) = 1.

The table below has rows indexed by the possible integer values of a from 1 through 10
inclusive and columns indexed by the values of b from 1 through 10 inclusive. The cell in
the row corresponding to a and the column corresponding to b contains gcd(a, b).

1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 1 1
2 1 2 1 2 1 2 1 2 1 2
3 1 1 3 1 1 3 1 1 3 1
4 1 2 1 4 1 2 1 4 1 2
5 1 1 1 1 5 1 1 1 1 5
6 1 2 3 2 1 6 1 2 3 2
7 1 1 1 1 1 1 7 1 1 1
8 1 2 1 4 1 2 1 8 1 2
9 1 1 3 1 1 3 1 1 9 1
10 1 2 1 2 5 2 1 2 1 10

By the reasoning above, the number of visible points is equal to the number of 1’s in
the table above. There are 63 1’s in the table, so there are 63 visible points P (a, b) with
0 < a ≤ 10 and 0 < b ≤ 10.

(b) We can answer all three parts of this question at once. Factoring into primes, we have
6 = 2× 3, 18 = 2× 3× 3, and 36 = 2× 2× 3× 3. The only prime numbers that divide 6
are 2 and 3, and the same is true of 18 and 36.
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Therefore, for a = 6, a = 18, and a = 36, gcd(a, b) = 1 exactly when 2 is not a divisor of b
and 3 is not a divisor of b. This means that the answer to (i), (ii), and (iii) is equal to the
number of integers b with 0 < b ≤ 50 that are neither a multiple of 2 nor a multiple of 3.

There are fifty integers b satisfying 0 < b ≤ 50 and exactly half of them are even. Thus,
25 of the values of b are multiples of 2. The largest multiple of 3 that is no larger than 50
is 48. This means the multiples of 3 between 1 and 50 inclusive are 3, 6, 9, and so on up
to 3× 16. Therefore, 16 of the values of b are multiples of 3.

Each of the totals computed in the previous paragraph, 25 and 16, includes the integers
that are multiples of both 2 and 3. An integer is a multiple of both 2 and 3 exactly when
it is a multiple of 6. This means the total 25 + 16 = 41 is equal to the number of values
of b that are either a multiple of 2 or a multiple of 3, but it overcounts by the number of
multiples of 6 since both 25 and 16 account for the number of multiples of 6.

The largest multiple of 6 that is no larger than 50 is 48, which is equal to 6× 8, so there
are 8 multiples of 6 that are no larger than 50. Therefore, 25 + 16− 8 = 33 integers b with
0 < b ≤ 50 have the property that they are either a multiple of 2, a multiple of 3, or both.
We are interested in the number of integers b with 0 < b ≤ 50 that are neither a multiple
of 2 nor a multiple of 3, which we can now compute as 50− 33 = 17.

For a = 6, a = 18, and a = 36, there are 17 visible points P (a, b) with 0 < b ≤ 50.

(c) In this solution, we will compute the number of visible points with 0 < a ≤ 50 and
0 < b ≤ 50, though some of the calculations will not be shown. With that said, the author
promises that the calculation was done entirely by hand, but will not deny that a calculator
was used to check them.

By the reasoning from the beginning of the solution to part (a), we wish to count all pairs
(a, b) with gcd(a, b) = 1, 0 < a ≤ 50, and 0 < b ≤ 50. We will declare now that a and b
are integers satisfying 0 < a ≤ 50 and 0 < b ≤ 50 in this solution to avoid repeating this
quantification.

For a fixed a, the number of b with gcd(a, b) = 1 is equal to the number of b such that
b has no prime factors in common with a. Therefore, as we saw in part (b), the primes
occurring in the prime factorization of a is what matters, not the number of times each
prime occurs. To compute this in general, we will compute the number of integers b that
do have a prime factor in common with a, then subtract the result from 50.

In general, we will need a way to compute the number of multiples of an integer n that are
less than or equal to 50. Suppose k is the largest positive integer such that kn ≤ 50. Then
k is the number of multiples of n that are no larger than 50. In other words, what we seek
is a general way to compute k from n. To do this, we observe that if k is the largest positive
integer such that kn ≤ 50, then 50 < (k + 1)n, so we have kn ≤ 50 < (k + 1)n. Dividing

through by n gives k ≤ 50

n
< k + 1. The quantities k and k + 1 are consecutive integers,

so we conclude that k is the largest integer that is no larger than
50

n
. For example, with

n = 6, we get that
50

6
= 8.3333 . . . , so the largest integer that is no larger than

50

6
is

8. This agrees with what was found in part (b) since there we showed that there are 8
positive multiples of 6 that are no larger than 50.
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We now introduce some standard notation. For a real number x, we denote by bxc the
largest integer that is less than or equal to x. For example, bπc = 3. When x is an integer,
bxc = x. For example, b5c = 5.

We now state a general fact: If u and v are positive integers, then the number of positive

multiples of u that are less than or equal to v is
⌊v
u

⌋
. You might want to think about why

this is also true when v < u.

We will now continue to address the given question. To start, we will count the number
of visible points P (a, b) when a is a prime number.

If a is a prime number, then the number of integers b for which gcd(a, b) 6= 1 is equal to
the number of multiples of a between 1 and 50 inclusive. Therefore, if a is prime, then the

number of visible points is 50−
⌊

50

a

⌋
.

The prime numbers that are no larger than 50 are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47

For the primes from a = 29 to a = 47, we have 25 < a < 50, so 1 =
50

50
<

50

a
<

50

25
= 2.

Thus, for each of the six primes between 29 and 47 inclusive, it must be that

⌊
50

a

⌋
= 1,

so there are 50− 1 = 49 visible points. This gives a total of 6× 49 = 294 visible points.

For the other nine primes from a = 2 through a = 23, the table below has the value of a

in the left column and the corresponding value of 50−
⌊

50

a

⌋
in the right column.

a 50−
⌊

50

a

⌋
2 25
3 34
5 40
7 43
11 46
13 47
17 48
19 48
23 48

Since 50 −
⌊

50

a

⌋
is the number of visible points when a is prime, we can get the number

of visible points with a prime by totaling the values in the right column of the table above
and adding this total to 294. This gives 379 + 294 = 673 visible points P (a, b) when a is
prime.

Next, consider the case when a = 4. Since 4 = 22, an integer b has gcd(4, b) = 1 exactly
when gcd(2, b) = 1. Put differently, b and 4 have a common divisor larger than 1 exactly
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when b and 2 have a common divisor larger than 1. The same is true of any positive integer
power of 2. This means that if a is a power or 2, then there are the same number of visible
points P (a, b) as there are visible points P (2, b). Thus, we get 25 visible points for each of
a = 4, a = 8, a = 16, and a = 32. Likewise, the number of visible points when a = 9 or
a = 27 is the same as when a = 3, so there are 34 visible points for a = 9 and a = 27. By
similar reasoning there are 40 visible points when a = 25 = 52 and 43 visible points when
a = 49 = 72.

When a = 1, P (a, b) is always visible, so there are 50 visible points when a = 1. We will
now recap with a subtotal: if a is prime, a is a power of a prime, or a = 1, then there are

673 + 4(25) + 2(34) + 40 + 43 + 50 = 974

visible points.

We still need to count the visible points when a takes the values

6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50

Using the reasoning in part (b), there are exactly 17 visible points P (a, b) if the prime
divisors of a are exactly 2 and 3. This accounts for a taking on the values

6, 12, 18, 24, 36, 48

so we get 6 × 17 = 102 visible points with the property that the prime divisors of a are
exactly 2 and 3. We will do a more general computation before adding these to the running
total of 974.

Generalizing the ideas to count the number of visible points when the prime divisors of a
are exactly 2 and 3, suppose a is an integer with exactly two prime divisors, p and q. The

number of integers less than or equal to 50 that are multiples of p is

⌊
50

p

⌋
and the number

of multiples of q is

⌊
50

q

⌋
. Each of these totals counts the common multiples of p and q,

but since p and q are distinct primes, their common multiples are exactly the multiples of
pq. Thus, the number of integers less than or equal to 50 that are multiples of either p or
q is ⌊

50

p

⌋
+

⌊
50

q

⌋
−
⌊

50

pq

⌋
and hence, the number of visible points when the prime divisors of a are exactly p and q is

50−
⌊

50

p

⌋
−
⌊

50

q

⌋
+

⌊
50

pq

⌋
.

Indeed, with p = 2 and q = 3, we get

50−
⌊

50

2

⌋
−
⌊

50

3

⌋
+

⌊
50

6

⌋
= 50− 25− 16 + 8 = 17.

When p = 2 and q = 5, there are 50 −
⌊

50

2

⌋
−
⌊

50

5

⌋
+

⌊
50

10

⌋
= 50 − 25 − 10 + 5 = 20

visible points. This is the number of visible points for a = 2 × 5 = 10, a = 22 × 5 = 20,
a = 23 × 5 = 40, and a = 2× 52 = 50.
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When p = 2 and q = 7, there are 50 − 25 − 7 + 3 = 21 visible points, which gives the
number of visible points when a = 14, a = 28, and a = 42.

In the table below, the numbers of visible points when a has exactly two prime divisors
are summarized. There are four columns in the table. In each row, the cell in the first
column contains a prime p, the cell in the second column contains a prime q with p < q,
the cell in the third column contains the number of visible points for any a whose prime
divisors are exactly p and q, and the cell in the fourth column contains a list of the values
of a with exactly these two prime divisors. Therefore, to find the number of visible points
P (a, b) if a has exactly two prime divisors p and q, locate a in the fourth column and the
number of visible points will be the integer in the same row in the third column. Note
that pairs (p, q) of primes are accounted for in the table below only if pq has at least one
multiple less than or equal to 50.

p q 50−
⌊

50

p

⌋
−
⌊

50

q

⌋
+

⌊
50

pq

⌋
a values

2 3 17 6, 12, 18, 24, 36, 48
2 5 20 10, 20, 40, 50
2 7 21 14, 28
2 11 23 22, 44
2 13 23 26
2 17 24 34
2 19 24 38
2 23 24 46
3 5 27 15, 45
3 7 29 21
3 11 31 33
3 13 32 39
5 7 34 35

The table above contains the number of visible points for every remaining a other than
a = 30 and a = 42. Adding the totals for each of these 24 values of a, we get

(6× 17) + (4× 20) + (2× 21) + (3× 23) + (3× 24) + (2× 27) + 29 + 31 + 32 + 34 = 545

Adding to our previous total, we get that there are 974 + 545 = 1519 visible points P (a, b)
where a is either 1, is a prime, is a power of a prime, or has exactly two distinct prime
divisors. As mentioned above, we now have counted the visible points except for when
a = 30 and a = 42. Notice that these are the only two positive integers less than 50 that
have more than two distinct prime divisors.

You may wish to think about a general way to count the number of visible points where
a has exactly three distinct prime divisors. It may be useful to read about the inclusion-
exclusion principle. For this solution, we will just list the values of b that have gcd(30, a) =
1 and gcd(42, b) = 1, respectively. For 30, they are

1, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49

and for 42 they are

1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47
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for totals of 14 visible points for each of a = 30 and a = 42. Therefore, the total number
of visible points P (a, b) with 0 < a ≤ 50 and 0 < b ≤ 50 is 1519 + 14 + 14 = 1547.

(d) To get an idea of why this is true, we first consider the following even more suspicious
looking expression:(

1 +
1

22
+

1

24
+

1

26
+ · · ·

)(
1 +

1

32
+

1

34
+

1

36
+ · · ·

)(
1 +

1

52
+

1

54
+

1

56
+ · · ·

)
· · ·

This is a product of infinitely many sums. Each sum is an infinite sum of the reciprocals
of the even powers of a prime.

Although it may require some imagination, consider what would happen if we were to
multiply this expression out. Each “term” would be a product of one summand from each

parenthetical expression. Suppose, for example, we choose the
1

p2
term for each prime p.

Then we would get a term

1

22 × 32 × 52 × 72 × 112 × 132 × 172 × · · ·

and since there are infinitely many primes, the denominator is a product of infinitely many
numbers that are greater than 1. This cannot possibly be any finite number, so we can

interpret this term as
1

∞
, which we have little choice but to interpret as being equal to 0.

We run into the same issue any time infinitely many of the “choices” are not equal to 1.
Thus, for a term to “contribute” anything to the sum, we can only choose finitely many
terms that are different from 1. That is, the expression above is equal to the sum of all
terms obtained by choosing a term from each parenthetical expression so that only finitely
many of the choices are different from 1. For example,

1

22
× 1

72
× 1

196
=

1

(2× 7× 193)2

and
1

78
× 1

10092
=

1

(74 × 1009)2

are terms in the sum.

If you think about it every term in the sum will be of the form
1

n2
. Moreover, given

a positive integer n, the prime factorization of n2 has the form p2e11 p2e22 · · · p
2ek
k where

p1, . . . , pk are distinct primes and e1, . . . , ek are positive integers. By choosing
1

p2eii

from

the parenthetical expression for the prime pi and 1 for all others, we get
1

n2
as a term in

the sum. Since prime factorizations are unique, there is only one way that
1

n2
can arise as

a term in the sum.

Therefore, it makes some sense that the product of infinite sums above is equal to the sum

1 +
1

22
+

1

32
+

1

42
+

1

52
+ · · · .
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Each sum in parentheses above is a geometric series, so we have the following:

1 +
1

22
+

1

32
+

1

42
+

1

52
+ · · ·

=

(
1 +

1

22
+

1

24
+

1

26
+ · · ·

)(
1 +

1

32
+

1

34
+

1

36
+ · · ·

)(
1 +

1

52
+

1

54
+

1

56
+ · · ·

)
· · ·

=

(
1

1− 1
22

)(
1

1− 1
32

)(
1

1− 1
52

)(
1

1− 1
72

)(
1

1− 1
112

)
· · ·

which shows that

1 +
1

22
+

1

32
+

1

42
+

1

52
+ · · · =

(
1

1− 1
22

)(
1

1− 1
32

)(
1

1− 1
52

)(
1

1− 1
72

)(
1

1− 1
112

)
· · ·

Now take reciprocals of both sides of the equation above to get

1

1 + 1
22

+ 1
32

+ 1
42

+ 1
52

+ · · ·
=

(
1− 1

22

)(
1− 1

32

)(
1− 1

52

)(
1− 1

72

)(
1− 1

112

)
· · ·

(e) It was argued at the beginning of the solution to part (a) that a point P (a, b) is visible
exactly when gcd(a, b) = 1. Equivalently, P (a, b) is visible exactly when a and b have no
prime divisors in common.

We will first discuss the prime p = 2. Suppose a is chosen randomly in the range 0 < a ≤ n

for some integer n. If n is even, then there is exactly a
1

2
chance that a is a multiple of 2.

If n is odd, then there is a
n−1
2

n
=

1

2
− 1

2n
chance that a is a multiple of 2. Notice that in

the latter case, the probability is very close to
1

2
when n is large since the quantity

1

2n
is

close to 0. Thus, if n is large, the probability that a is a multiple of 2 is extremely close

to
1

2
, whether n is even or odd.

Now suppose a and b are both between 1 and n inclusive. The probability that a and b

are both multiples of 2 is close to
1

2
× 1

2
, and this implies that the probability that a and

b do not have a common divisor of 2 is close to 1− 1

22
.

We point out that 1− 1

22
becomes a better estimate for the probability as n gets larger.

More generally, consider a prime p and some large fixed positive integer, n. Now choose an
integer a randomly with 0 < a ≤ n. If n happens to be a multiple of p, then the probability

that a is a multiple of p is exactly
1

p
. If n is not a multiple of p, then the probability that

a is a multiple of p is close to
1

p
(as with p = 2, it gets closer as n gets larger). By the

same reasoning as with p = 2, if n is large and P (a, b) is chosen randomly with 0 < a ≤ n
and 0 < b ≤ n, then the probability that a and b do not have a common divisor of p is

close to 1− 1

p2
.

7



Now consider two different prime numbers p and q. Following reasoning similar to that

which is above, if a point P (a, b) is chosen randomly, there is a
1

p2
chance that a and b have

a common divisor of p, there is a probability of
1

q2
that a and b have a common divisor of

q, and there is a probability of
1

(pq)2
that a and b have a common divisor of both p and

q. The latter probability is because a number is a multiple of p and q exactly when it is a
multiple of pq.

We can now say that the probability that a and b have either a divisor of p in common
and a divisor of q in common should be very close to

1

p2
+

1

q2
− 1

(pq)2

where we subtract
1

(pq)2
since it is the probability that an integer is a multiple of both p

and q. Therefore, the probability that a and b have neither a divisor of p in common nor
a divisor of q in common is

1− 1

p2
− 1

q2
+

1

(pq)

2

=

(
1− 1

p2

)(
1− 1

q2

)
.

Now let Event 1 be the event that a and b do not have a common divisor of p and Event
2 be the event that a and b do not have a common divisor of q. We have shown that the
probability that both Event 1 and Event 2 occur is equal to the product of the probabilities
that the events occur individually. In probability theory, we would conclude that Event 1
and Event 2 are independent.

The probability that gcd(a, b) = 1 is equal to the probability that a and b have no prime
divisors in common. By the reasoning above, the probability that they have no prime
divisors in common is the product of the probabilities for each individual prime. Therefore,
the probability is(

1− 1

22

)(
1− 1

32

)(
1− 1

52

)(
1− 1

72

)(
1− 1

112

)
· · ·
(

1− 1

p2

)
· · ·

In part (d), we argued that this quantity is the reciprocal of 1 +
1

22
+

1

32
+

1

42
+ · · · . It was

given in part (e) that 1 +
1

22
+

1

32
+

1

42
+ · · · = π2

6
. Thus, the probability is

6

π2
≈ 0.6079.

Below is a simple Python script that, for a given positive integer n, returns the proportion
of points P (a, b) with 0 < a ≤ n and 0 < b ≤ n that are visible.

import math

n = int(input())

count = 0

for a in range(1,n+1):

for b in range(1,n+1):

if math.gcd(a,b) == 1:

count += 1

print(float(count)/n**2)
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Final Remark: You may wonder if a similar analysis can be performed in 3 dimensions.
That is, we can consider points in space with coordinates (a, b, c) that are all positive
integers and ask whether it is visible. Here, a point being “visible” would again mean
there are no points with integer coordinates on the line segment connecting it to the
origin.

In fact, a very similar argument can be used to relate the probability that a point (a, b, c)
with positive integer coordinates is visible to the quantity

1 +
1

23
+

1

33
+

1

43
+

1

53
+ · · · .

An interesting fact about the quantity above is that there is no known “closed form” like
there is for the sum of the reciprocals of the squares. It is known, however, that it does
“equal” something, and that value is about 1.2020569.

You might even stretch your imagination further to wonder about the probability that a
point with positive integer coordinates is “visible” in four or more dimensions. It turns
out to always be related to the quantity

1 +
1

2d
+

1

3d
+

1

4d
+

1

5d
+ · · ·

where d is the dimension. For d ≥ 2, this quantity always “equals” something, and in fact,
it is known that when d is even, it is equal to πd times a rational number. You may wish
to search “Bernoulli numbers” for more information.

These infinite sums are special values of a very famous function known as the “Riemann
Zeta Function”. This function has been an important object of study in mathematics for
well over a century and there are still many unsolved problems involving it.
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Problem of the Month
Problem 3: December 2021

Problem

Before stating the problem, we will introduce some notation and terminology.

• In 4ABC, we will denote the length of BC by a, the length of AC by b, and the length of
AB by c.

• The semiperimeter of 4ABC will be denoted by s and is equal to
a + b + c

2
.

• The incircle of 4ABC is the unique circle that is tangent to all three sides of 4ABC. Its
radius is called the inradius of 4ABC and is denoted by r. An important fact about the
incircle is that its centre is at the intersection of the three angle bisectors of the triangle.

• The circumcircle of 4ABC is the unique circle on which all three of A, B, and C lie. Its
radius is called the circumradius of 4ABC and is denoted by R. An important fact about
the circumcircle is that its centre is at the intersection of the perpendicular bisectors of the
three sides of the triangle.

The diagram below illustrates some of the information above.

A

B

C

a

c

b

r

R

This problem is about right-angled triangles. Most of us are aware of the famous Pythagorean
theorem, but there are other interesting properties only satisfied by right-angled triangles.

(a) Suppose 4ABC is right-angled at C and that h is the length of the altitude from C to AB.

Show that
1

a2
+

1

b2
=

1

h2
.

(b) Suppose 4ABC is right-angled. Show that cos2∠A + cos2∠B + cos2∠C = 1.

(c) Suppose 4ABC is right-angled. Show that s = r + 2R.

(d) Suppose 4ABC satisfies a2 + b2 = c2. Prove that ∠C = 90◦.

(e) Suppose4ABC satisfies cos2∠A+cos2∠B+cos2∠C = 1. Prove that4ABC is right-angled.

(f) Suppose 4ABC satisfies s = r + 2R. Show that 4ABC is right-angled. [A solution to this
problem will likely require some general identities involving the inradius and circumradius.
Some specific useful identities will be given in the hint.]



Hint

There are several ways to approach each of the parts of this problem. The hints below correspond
to the solutions that will be provided. You might find solutions that do not use the ideas in these
hints.

(a) Apply the Pythagorean theorem to some of the smaller right-angled triangles that appear
once the altitude is drawn.

(b) If there is a right angle at A, then what does the equation become?

(c) The important facts in the problem statement about how to find the centres of the incircle
and circumcircle may be useful.

(d) Be careful not to confuse the statements “If ∠C = 90◦ then a2 + b2 = c2” and “If a2 + b2 = c2

then ∠C = 90◦”. The first statement is what is usually considered the Pythagorean theorem.
The second statement is its converse, and this is the statement this problem asks you to
verify. This means that you cannot assume that ∠C = 90◦ has a right angle; you need to
assume a2 + b2 = c2 and deduce that ∠C = 90◦.

(e) Try to use trigonometric identities to prove that
(

cosA
)(

cosB
)(

cos(A + B)
)

= 0.

(f) We found several solutions to this problem and each of them involves significant algebraic
manipulation. The simplest solution that we found involved an expression for 8R2 in terms
of a, b, and c. In our solution, we will use the following two facts that are true of every
triangle.

• The quantities rs,
abc

4R
, and

√
s(s− a)(s− b)(s− c) are all equal to the area of 4ABC.

• The Law of Sines can be extended to the following set of equations:

a

sinA
=

b

sinB
=

c

sinC
= 2R

.

Proofs of these facts will not be included in the solution, but they can be easily found online.
Better yet, try to prove them for yourself!



Problem of the Month
Solution to Problem 3: December 2021

(a) Suppose the altitude from C intersects side AB at D.

A B

C

D

h

c

b
a

Because 4ADC and 4ACB are both right-angled and have ∠A in common, we have that

4ADC is similar to 4ACB. This means
DC

AC
=
CB

AB
or

h

b
=
a

c
.

Rearranging this equation, we have
1

h
=

c

ab

Squaring both sides and using c2 = a2 + b2, we have

1

h2
=

c2

a2b2

=
a2 + b2

a2b2

=
a2

a2b2
+

b2

a2b2

=
1

b2
+

1

a2

(b) We will assume that ∠C = 90◦. The argument is similar if ∠A = 90◦ or ∠B = 90◦.

Since 4ABC is right-angled at C, we have that cos∠C = cos 90◦ = 0. Therefore,

cos2∠A+ cos2∠B + cos2∠C =

(
b

c

)2

+
(a
c

)2
+ 02

=
a2 + b2

c2

=
c2

c2

= 1

(c) As with part (b), we will assume that the right angle occurs at C since the argument is
similar if it is at A or B.
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We will first show that the length of the hypotenuse is 2R by showing that the centre of
the circumcircle is the midpoint of the hypotenuse.

Assume that D is the midpoint of AC. Let E be the point where the perpendicular bisector
of AC intersects the hypotenuse of 4ABC. As well, connect E to C.

C A

B

D

E

Since they share ∠A and both have a right angle, 4ABC and 4AED are similar. Since

CD = AD, we have that
AD

AC
=

1

2
, so

AE

AB
=

1

2
because 4ABC is similar to 4AED.

Rearranging, we have AB = 2AE, which implies that E is the midpoint of AB.

Since CD = AD, ∠CDE = ∠ADE = 90◦, and 4ADE and 4CDE share side DE,
we have that 4ADE is congruent to 4CDE by side-angle-side congruence. This means
CE = AE. We now have that E is the midpoint of the hypotenuse of 4ABC which
means that AE = BE. Since CE = AE as well, we have shown that the midpoint of the
hypotenuse is equidistant from the three vertices of 4ABC.

If we draw a circle centred at E with radius equal to AE, it will pass through all three
vertices of the triangle. The circumcircle always exists and is the only circle with this
property, so this circle is in fact the circumcircle, which means AE = BE = CE = R. It
follows that the length of the hypotenuse in a right-angled triangle is equal to 2R.

The next image depicts a right-angled triangle with its incircle, having centre I.

C A

B

X

Y

Z
I

A tangent to a circle is perpendicular to the radius connecting the centre to the point
of tangency. Therefore, ∠IY C = ∠IZC = 90◦. Since IY CZ is a quadrilateral with
three right angles, its fourth angle must also be right, so IY CZ is a rectangle. As well,
IZ = IY = r, which means IY CZ is a square with side length r. Thus, CZ = CY = r.

In general, if two tangents to the same circle intersect at some point outside the circle,
then the distances from that point to each of the points of tangency are equal. In our
case, this implies BZ = BX and AX = AY . Using that BZ = BX, AX = AY , and
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CZ = CY = r, we get that the perimeter of 4ABC is

AX + AY +BX +BZ + CY + CZ = AX + AX +BX +BX + r + r

= 2(AX +BX + r)

= 2(AB + r).

Finally, since we also know that AB = 2R, we get that the perimeter of4ABC is 2(2R+r).
Therefore, s = r + 2R.

(d) Assume that a2 + b2 = c2 and then construct 4DEF so that DF = b, EF = a, and
∠DFE = 90◦.

A B

C

c

b a

D E

F

b a

By the Pythagorean theorem applied to 4DEF (which is right-angled by construction),
we have that a2 + b2 = DE2. Since a2 + b2 = c2, we have c2 = DE2. Since both c and DE
are positive, it follows that DE = c. This means 4ABC and 4DEF are congruent by
side-side-side congruence. Therefore, ∠ACB = ∠DFE = 90◦, so 4ABC is right-angled
at C.

(e) In this solution, we will use the following identities that hold for all angles θ, x, and y.

2 cos2 θ − 1 = cos(2θ) (1)

cos(360◦ − θ) = cos θ (2)

2 cos(x+ y) cos(x− y) = cos(2x) + cos(2y) (3)

cos(x+ y) + cos(x− y) = 2 cosx cos y (4)

We will begin with the assumption that cos2∠A + cos2∠B + cos2∠C = 1 and deduce
several equivalent identities. In an effort to declutter the calculation below, we will drop
the “∠” from ∠A, ∠B, and ∠C and denote them by A, B, and C, respectively. In the
calculation that follows, we will use the identities above by referring to their label of (1),

3



(2), (3), or (4). The line labelled by (5) is using the fact that A+B + C = 180◦.

cos2A+ cos2B + cos2C = 1

cos 2A+ 1

2
+

cos 2B + 1

2
+

cos 2C + 1

2
= 1 (1)

(cos 2A+ 1) + (cos 2B + 1) + (cos 2C + 1) = 2

cos 2A+ cos 2B + cos 2C = −1

cos 2A+ cos 2B + cos(2(180◦ − A−B)) = −1 (5)

cos 2A+ cos 2B + cos(2A+ 2B) = −1 (2)

2 cos(A+B) cos(A−B) + cos
(
2(A+B)

)
= −1 (3)

2 cos(A+B) cos(A−B) + 2 cos2(A+B)− 1 = −1 (1)

2 cos(A+B) cos(A−B) + 2 cos2(A+B) = 0

2 cos(A+B)
(

cos(A−B) + cos(A+B)
)

= 0

4 cos(A+B) cosA cosB = 0 (4)

This means that either cos∠A = 0, cos∠B = 0, or cos(∠A+∠B) = 0. If cos∠A = 0, then
∠A = 90◦. If cos∠B = 0, then ∠B = 90◦. If cos(∠A + ∠B) = 0, then ∠A + ∠B = 90◦,
which implies ∠C = 180◦ −∠A−∠B = 90◦. In all three cases, 4ABC has a right angle.
Note that ∠A, ∠B, ∠C, and ∠A+ ∠B all measure between 0◦ and 180◦, so a cosine of 0
does imply an angle of 90◦.

(f) As mentioned in the hint, the area of 4ABC is equal to rs as well as
abc

4R
. Equating these

two expressions gives rs =
abc

4R
which can be rearranged to get

4rR =
abc

s
(∗)

By Heron’s formula, the area of the triangle is also equal to
√
s(s− a)(s− b)(s− c). This

implies rs =
√
s(s− a)(s− b)(s− c), so we can square both sides and solve to get

r2 =
(s− a)(s− b)(s− c)

s
(∗∗)

Starting with the equation, s = r+2R, we can square both sides to get s2 = r2+4rR+4R2.
We will now solve for 8R2 in terms of a, b, and c using this equation, some algebraic
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manipulation, as well as (∗) and (∗∗) above.

4R2 = s2 − r2 − 4rR

4R2 = s2 − (s− a)(s− b)(s− c)
s

− abc

s
(∗), (∗∗)

8R2 = 2s2 − 2(s− a)(s− b)(s− c)
s

− 2abc

s

=
1

s

(
2s3 − 2(s− a)(s− b)(s− c)− 2abc

)
=

1

s

(
2s3 − 2(s3 − s2(a+ b+ c) + s(ab+ ac+ bc)− abc)− 2abc

)
=

1

s

(
2s2(a+ b+ c)− 2s(ab+ ac+ bc)

)
= 2s(a+ b+ c)− 2(ab+ ac+ bc)

Now note that 2s = a+ b+ c, so in fact

8R2 = (a+ b+ c)2 − 2(ab+ ac+ bc)

= a2 + b2 + c2 + 2(ab+ ac+ bc)− 2(ab+ ac+ bc)

= a2 + b2 + c2.

In the hint, the Extended Law of Sines was given and says that

a

sin∠A
=

b

sin∠B
=

c

sin∠C
= 2R

for any triangle. This implies the following three equations

a2

4R2
= sin2∠A

b2

4R2
= sin2∠B

c2

4R2
= cos2∠C.

Dividing 8R2 = a2 + b2 + c2 by 4R2, we get

2 =
a2

4R2
+

b2

4R2
+

c2

4R2

= sin2∠A+ sin2∠B + sin2∠C

= (1− cos2∠A) + (1− cos2∠B) + (1− cos2∠C)

which implies 2 = 3− (cos2∠A+ cos2∠B + cos2∠C). This equation can be rearranged to
get cos2∠A+ cos2∠B + cos2∠C = 1.

We have now assumed that s = r+2R and deduced that cos2∠A+cos2∠B+cos2∠C = 1.
By part (e), 4ABC must be right-angled.
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Problem of the Month
Problem 4: January 2022

Problem

The goal of this problem is to work through some techniques that can sometimes help find the
roots of polynomials. The statements of some parts of this problem refer to repeated roots, which
we will now define. Suppose r is a root of the polynomial p(x), that is, p(r) = 0. You may already
know that if p(r) = 0, then (x − r) divides evenly into p(x). We say that r is a repeated root
of p(x) if (x − r)2 divides evenly into p(x). For example, 1 is a repeated root of x2 − 2x + 1
because x2 − 2x + 1 = (x − 1)2, and 2 is a repeated root of x4 − 5x3 + 6x2 + 4x − 8 since
x4 − 5x3 + 6x2 + 4x− 8 = (x− 2)2(x2 − x− 2).

(a) The polynomials p(x) = 2x2 − 1275x + 194292 and q(x) = x2 − 635x + 96516 have a root in
common. Determine both roots of both polynomials without using the quadratic formula.

(b) Let p(x) = x3 + ax2 + bx + c be a polynomial with a root r. Show that r is a repeated root
of p(x) if and only if r is a root of the polynomial q(x) = 3x2 + 2ax + b.

You may recognize q(x) as the derivative of p(x). If you are familiar with derivatives, you
might want to try to generalize this part.

(c) Suppose p(x) = x3 + bx + c has roots u, v, and w (which may not all be different). Express
the quantity (u − v)2(v − w)2(w − u)2 in terms of b and c. This quantity is known as the
discriminant of p(x), and this exercise shows that its value can be determined from the
coefficients without knowing the roots. Explain how, without knowing any of the roots, it is
possible to determine if a cubic of the form x3 + bx + c has a repeated root.

(d) Consider the polynomial p(x) = x3 + ax2 + bx + c. Show that the coefficient of x2 in the
polynomial q(x) = p

(
x− a

3

)
is equal to 0. Explain how the roots of p(x) can be found easily

if the roots of q(x) are known.

(e) Find all roots of the polynomial p(x) = x3 − 135x2 + 5832x− 81648.



Hint

In several parts of this problem, it might be useful to review how the roots of a polynomial are
related to its coefficients. In particular, how the coefficients arise as combinations of the roots.

(a) Suppose r is a common root of p(x) and q(x). Can you use what you know about p(r) and
2q(r) to deduce the value of r without using the quadratic formula?

(b) Assuming there is a repeated root, use the relationships between the roots and the coefficients
to compute q(r) where r is the repeated root. For the other direction, you can try something
similar or attempt to divide p(x) by (x− r)2, where r is the common root of p(x) and q(x).

(c) Try to show that (u− v)2 = −ab− 3uv, and do not forget what it means for u, v, and w to
be roots of p(x)!

(d) Think about how the graphs of the polynomials p(x) and q(x) compare to one another.

(e) First use part (d) to find a cubic that has its coefficient of x2 equal to 0, but whose roots
are a translation of those of p(x). Next, use part (c) to show that this new polynomial, and
hence, the original one, has a repeated root. Next, use part (b) to find a quadratic that
shares that repeated root, and finally use the idea from part (a) to find the repeated root.



Problem of the Month
Solution to Problem 4: January 2022

Before starting the solution, we include a brief discussion on how the roots of polynomials are
related to their coefficients.

Consider the quadratic polynomial ax2 + bx + c where a, b, and c are real numbers with a 6= 0.

If u and v are the roots of the polynomial, then u + v = − b

a
and uv =

c

a
. This is because

ax2 + bx + c has the same roots as x2 +
b

a
x +

c

a
, and since u and v are the roots, we must have

x2 +
b

a
x +

c

a
= (x− u)(x− v) = x2 − (u + v)x + uv.

By similar reasoning, if x3 + ax2 + bx + c has roots u, v, and w, then it must factor as

x3 + ax2 + bx + c = (x− u)(x− v)(x− w)

and expanding, we find that −a = u + v + w, b = uv + vw + wu, and c = −uvw. These are
often known as (some of) Vieta’s formulas and they are very useful when studying the roots of
polynomials.

(a) Let r be the common root. Then 2r2 − 1275r + 194292 = 0 and r2 − 635r + 96516 = 0.
Doubling the second equation gives 2r2 − 1270r + 193032 = 0. Subtracting the equation
2r2 − 1275r + 194292 = 0 from the equation 2r2 − 1270r + 193032 = 0 gives

0 = 0− 0

= (2r2 − 1270r + 193032)− (2r2 − 1275r + 194292)

= 5r + 193032− 194292

= 5r − 1260

which implies 5r = 1260. Solving for r gives r = 252. From the discussion before the
solution, the sum of the roots of x2−635x+96516 is 635, so the other root is 635−252 = 383.

Similarly, the sum of the roots of 2x2 − 1275x + 194292 is
1275

2
and one of the roots is

252, so the other is
1275

2
− 504

2
=

771

2
.

(b) Suppose r is a root of p(x).

We will first assume r is a repeated root of p(x) and deduce that r is a root of q(x). Since
r is a repeated root of p(x), (x − r)2 divides evenly into p(x). This means there must be
some other root t such that (x− r)2(x− t) = x3 + ax2 + bx + c. From the formulas before
the solution, we have that a = −2r − t, b = r2 + 2rt, and c = −r2t. Thus

q(r) = 3r2 + 2ar + b

= 3r2 + 2(−2r − t)r + r2 + 2rt

= 3r2 − 4r2 − 2rt + r2 + 2rt

= 0

1



and so r is a root of q(x). Thus, if r is a repeated root of p(x), then r is a root of q(x).

Now we will assume r is a root of q(x) and deduce that (x− r)2 divides evenly into p(x).
Since r is a root of q(x), we have 3r2 + 2ar + b = 0, so

b = −(3r2 + 2ar) (1)

As well, we are still assuming that p(r) = 0, which means r3 + ar2 + br + c = 0 or
c = −r3 − ar2 − br. Multiplying 3r2 + 2ar + b = 0 through by r and rearranging gives
−br = 3r3 + 2ar2, and substituting this into c = −r3 − ar2 − br gives

c = −r3 − ar2 + (3r3 + 2ar2)

= 2r3 + ar2 (2)

Using these equations, we have

(x− r)2(x + a + 2r) = (x2 − 2rx + r2)(x + a + 2r)

= x3 + (a + 2r − 2r)x2 + (r2 − 2ar − 4r2)x + (ar2 + 2r3)

= x3 + ax2 − (3r2 + 2ar)x + (2r3 + ar2)

= x3 + ax2 + bx + c (1) and (2)

= p(x)

This shows that if r is a root of p(x) and q(x), then (x− r)2 = x2−2rx+ r2 divides evenly
into p(x), which means r is a repeated root of p(x).

Here is another solution that uses the following fact: If

p(x) = xn + an−1x
n−1 + an−2x

n−2 + · · ·+ a1x + a0

is a polynomial of degree n with real coefficients, then there are complex numbers r1, . . . , rn
such that p(x) = (x− r1)(x− r2) · · · (x− rn). This is a formulation of the famous Funda-
mental Theorem of Algebra. Proving this theorem is far beyond the scope of this activity,
but to readers who recognize q(x) as the derivative of p(x) and who know the product rule,
it offers a more enlightening proof of the fact in this problem.

Suppose p(x) = (x − r1)(x − r2)(x − r3). Observe that −(r1 + r2 + r3) = a as well as
r1r2 + r1r3 + r2r3 = b by Vieta’s formulas, which will still hold for complex numbers.
Interestingly, even though the roots r1, r2, and r3 may not be real, their sum and the
sum of their pairwise products will be real. For reasons that may seem utterly mysterious
unless you have seen the product rule, we have the following:

q(x) = 3x2 + 2ax2 + b

= 3x2 − 2(r1 + r2 + r3)x + r1r2 + r1r3 + r2r3

= 3x2 −
(
(r1 + r2) + (r2 + r3) + (r3 + r1)

)
x + r1r2 + r2r3 + r3r1

=
(
x2 − (r1 + r2)x + r1r2

)
+
(
x2 − (r2 + r3)x + r2r3

)
+
(
x2 − (r3 + r1)x + r3r1

)
= (x− r1)(x− r2) + (x− r2)(x− r3) + (x− r3)(x− r1)

and from this, the solution falls out almost immediately. The roots of p(x) are r1, r2, and
r3. Can you see why this form of q(x) implies that q(x) and p(x) share a root exactly when
at least two of r1, r2, and r3 are the same?

2



(c) Set D = (u − v)2(v − w)2(w − u)2. Since u, v, and w are the roots of x2 + bx + c (note
that a = 0), Vieta’s formulas imply the equations

u + v + w = 0 (1)

uv + vw + wu = b (2)

uvw = −c (3)

Adding 3uv to both sides of (2) and factoring gives b + 3uv = 4uv + w(u + v). From (1),
we also have that w = −u− v. Substituting this into b + 3uv = 4uv + w(u + v) gives

b + 3uv = 4uv + w(u + v)

= 4uv − (u + v)(u + v)

= 4uv − u2 − 2uv − v2

= −(u2 − 2uv + v2)

= −(u− v)2

from which it follows that −b − 3uv = (u − v)2. A very similar calculation shows that
−b− 3vw = (v − w)2 and −b− 3wu = (w − u)2. Using these three equations, we have

D = (u− v)2(v − w)2(w − u)2

= (−3uv − b)(−3vw − b)(−3wu− b)

= −(b + 3uv)(b + 3vw)(b + 3wu)

= −
(
b3 + 3b2(uv + vw + wu) + 9b(u2vw + uv2w + uvw2) + 27u2v2w2

)
= −

(
b3 + 3b2(b) + 9buvw(u + v + w) + 27(uvw)2

)
(2)

= −
(
4b3 + 9buvw(0) + 27(−c)2

)
(1) and (3)

= −4b3 − 27c2

(d) If we were to expand

p
(
x− a

3

)
=

(
x− a

3

)3

+ a
(
x− a

3

)2

+ b
(
x− a

3

)
+ c,

the x2 term must come from
(
x− a

3

)3

and a
(
x− a

3

)2

. The x2 term coming from
(
x− a

3

)3

is −3
(a

3
x2
)

= −ax2 and the x2 term coming from a
(
x− a

3

)2

is ax2. Their sum is 0, so

the coefficient of x2 in the polynomial p
(
x− a

3

)
must be 0.

Suppose r is a root of q(x). Then q(r) = 0, which means p
(
r − a

3

)
= 0. This means r− a

3
is a root of p(x). As well, if t is a root of p(x), then t +

a

3
is a root of q(x) since

q
(
t +

a

3

)
= p

(
t +

a

3
− a

3

)
= p(t) = 0

Thus, the roots of p(x) are exactly the roots of q(x) with
a

3
subtracted from them. If you

have studied horizontal translations of functions, you may notice that q(x) is a horizontal

3



translation of p(x) to the right by
a

3
, which gives a geometric explanation of why the roots

of one polynomial are just the roots of the other after a horizontal shift.

This may not seem like an important observation, but it is of both algebraic and historical
significance. In a theoretical sense, it tells us that if we can understand the roots of cubics
without a quadratic term, then we can understand the roots of every cubic. Just like there
is a “quadratic formula” that will produce the exact roots of any quadratic polynomial
in terms of its coefficients, there is a “cubic formula”. The general cubic formula is quite
complicated, but its specialized version in the case where the quadratic term is missing is
much simpler.

In fact, this specialized formula was discovered many years before the general formula was,
which may seem surprising since, as observed in this question, the only barrier between the
two appears to be a simple translation. Indeed, the observation in this problem is the one
found by Cardano that finally generalized the specialized cubic formula to handle more
general cubics. By today’s standards, the observation is as simple as it seems. However,
one must keep in mind that the techniques of modern algebra were not available in the
16th century. What seems today like a quick algebraic substitution and manipulation was a
geometric observation that, by today’s standards, would seem contrived and unnecessary.

Cardano’s formula will find the roots of any cubic in terms of its coefficients. However,
because of the need to extract roots of negative and sometimes complex numbers, mathe-
maticians of the day, in a sense, did not know how to use the formula to its full potential.
You might wish to do some research on the history of the cubic formula.

(e) We will consider the polynomial

q(x) = p
(
x− a

3

)
= p

(
x− −135

3

)
= p(x + 45)

We will not show the calculations, but it it can be checked that

(x + 45)3 − 135(x + 45)2 + 5832(x + 45)− 81648 = x3 − 243x− 1458

and so we will find the roots of x3− 243x− 1458 and then subtract −45 from them to get
the roots of the given polynomial.

To find the roots of this simpler cubic, we first calculate its discriminant. Here, b = −243
and c = −1458. So

−4b3 − 27c2 = −4(−243)3 − 27(−1458)2 = 57395628− 57395628 = 0

and by part (c), the polynomial x3 − 243x− 1458 must have a repeated root.

By part (b), that repeated root, r, must also be a root of the quadratic 3x2 − 243. If
3r2 − 243 = 0, then r2 − 81 = 0, which means r = ±9. [At this point, we could test
both possibilities to see which is the root of the cubic of interest, but we will go through
the calculation to demonstrate how this sort of technique works more generally.] Since
r2 − 81 = 0, r3 − 81r = 0. We also have that r3 − 243r − 1458 = 0. Subtracting this

equation from r3 − 81r = 0 gives 162r + 1458 = 0, so r = −1458

162
= −9.

4



We now have that −9 is a root of x3 − 243x − 1458, and in fact, it must be a repeated
root. This means we can factor (x+9)2 out of the polynomial. Indeed, a bit of polynomial
division reveals that

x3 − 243x− 1458 = (x2 + 18x + 81)(x− 18)

This means the final root of x3− 243x− 1458 is 18, so the roots of the original polynomial
are −9 + 45 = 36, which is a repeated root, and 18 + 45 = 63. You can check that the
polynomial in the problem factors as

(x− 36)(x− 36)(x− 63) = x3 − 135x2 + 5832x− 81648

While it may have been just as well to use some other technique like the rational roots
theorem, the point being made here is that there are potentially a few simplifying tricks
when it comes to finding roots of polynomials. The first is the substitution at the beginning
to change our focus to a polynomial with one of its coefficients equal to 0 (can you see how
this is done for polynomials of higher degree?). The next is to check the discriminant to
detect repeated roots. If there is a repeated root, then, in principle, it is easier to find than
a non-repeated root because of the trick involving the derivative (this also generalizes to
higher degree polynomials). There are many algorithms known for factoring polynomials,
especially those with integer coefficients. They are surprisingly efficient because of tricks
like these.
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Problem of the Month
Problem 5: February 2022

Problem

In each part of this problem, there is a hallway containing of K doors numbered consecutively
from 1 to K that are all initially closed. To toggle a door means to open it if it is closed and to
close it if it is open. We will also use the notation that for a positive integer n, τ(n) is equal to
the number of positive integer factors of n. For example, τ(1) = 1 since 1 has exactly one positive
factor and for a prime number p, we always have τ(p) = 2 since prime numbers have exactly two
positive factors. For another example τ(10) = 4 since it has four positive integer factors, 1, 2, 5,
and 10.

(a) In this part, K = 100. 100 “steps” are performed as follows:

• In step 1, every door that is numbered with a multiple of 1 is toggled.

• In step 2, every door that is numbered with a multiple of 2 is toggled.

• In step 3, every door that is numbered with a multiple of 3 is toggled.

In step n, every door that is numbered with a multiple of n is toggled. After all 100 steps
are performed, which doors are open?

(b) In this part, K = 100. As with part (a), 100 steps are performed with one step for each
integer n from 1 through K. This time, in step n, each door that is numbered with a multiple
of n is toggled n times. For example, in step 5, each door that is numbered with a multiple
of 5 is to be toggled 5 times. After all 100 steps are performed, which doors are open?

(c) In this part, K = 29 × 34 × 513 × 712. As with parts (a) and (b), a step is performed for each
positive integer n from 1 through K. In step n, every door that is numbered by a multiple of
n is toggled τ(n) times. For example, in step 5, every door that is numbered by a multiple
of 5 is toggled τ(5) = 2 times.

After all K steps are performed, is the door numbered with K open or closed?



Hint

(a) Solving this problem will come down to counting how many positive factors each door number
has. It might be useful to determine the number of factors of the first few positive integers
and see if you notice a pattern. Try determining the number of factors of the integers from
1 through 20.

(b) In this part, whether a door is open or closed only depends on how many odd positive factors
it has.

(c) The following general fact may be useful in this or the other parts: Every integer n can
be expressed in the form n = pe11 p

e2
2 · · · pekk where the pi are distinct prime numbers and

the ei are positive integers. An integer d is a positive factor of n if and only if it can be
expressed in the form d = pf11 p

f2
2 · · · pfkk where 0 ≤ fi ≤ ei for each i. This means that

τ(n) = (e1 + 1)(e2 + 1) · · · (ek + 1). Can you see why?



Problem of the Month
Solution to Problem 5: February 2022

(a) After the first 100 steps are performed, a door will be open if it was toggled an odd number
of times and closed if it was toggled an even number of times. Therefore, to determine
whether a door is open or closed after all 100 steps, we need to determine how many times
it has been toggled.

To gain intuition, we will look at a few particular doors. Door 4 is toggled in Step 1, Step
2, Step 4, and no other steps. This is because 1, 2, and 4 are the only positive factors of
4. This means Door 4 will be open after all 100 steps.

Door 10 is toggled in Step 1, Step 2, Step 5, and Step 10. No other positive integers are
factors of 10, so there are no other steps in which Door 10 is toggled. Therefore, Door 10
is toggled four times, so it is closed after all 100 steps.

Recall from the problem statement that τ(n) is equal to the number of positive factors of
n. Door n is toggled in Step k if and only if n is a multiple of k. Put differently Door n
is toggled in Step k if and only if k is a factor of n. Thus, Door n is toggled exactly τ(n)
times. Note that since n ≤ 100 and 100 steps are performed, Step k will occur for every
factor k of n.

Combining this observation with the earlier discussion, Door n will be open after all 100
steps if and only if τ(n) is odd. We will now argue that τ(n) is odd if and only if n is a
perfect square.

Fix a positive integer n and suppose m is a factor of n with 1 ≤ m <
√
n. Then

n

m
is a

factor of n with the property that
√
n <

n

m
≤ n. Similarly, if m is a factor of n with the

property that
√
n < m ≤ n, then

n

m
is a factor of n with the property that 1 ≤ n

m
<
√
n.

Notice that m × n

m
= n, so either way, if m is a positive factor of n that is not equal to

√
n, then

(
m,

n

m

)
is a factor pair for n with one factor less than

√
n and the other greater

than
√
n.

By the previous paragraph, for any positive integer n, there are an even number of positive
factors of n that are different from

√
n. This means that the integer n has an odd number

of positive factors if and only if
√
n is a factor of n. If n is a perfect square, then

√
n is an

integer and
√
n
√
n = n, so

√
n is a factor of n. If n is not a perfect square, then

√
n is not

an integer, so it cannot be a factor of n. Therefore, the integer n has an odd number of
positive factors if and only if it is a perfect square. This means that Door n will be open
after all 100 steps if and only if n is a perfect square.

(b) Similar to part (a), Door n gets toggled at Step d for every factor d of n. However, this
time it gets toggled d times for each factor d of n. Therefore, the total number of times
that a door gets toggled is equal to the sum of its positive factors.

Since a door is open after all 100 steps if and only if it has been toggled an odd number

1



of times, we need to determine for which positive integers n the sum of the factors of n is
odd.

We will consider two cases.

Case 1: Suppose n is odd. In this situation, every positive factor of n is odd. The sum
of odd integers is odd if there is an odd number of them being added together and even
otherwise. Thus, the positive factors of an odd integer have an odd sum if and only if
there is an odd number of them. In other words, if n is odd, then Door n is open after
all 100 steps if and only if τ(n) is odd. By part (a), Door n is open if and only if n is a
perfect square.

Case 2: Suppose n is even. This means there is a positive integer k and an odd positive
integer m such that n = 2km. The number of even factors will not affect whether the sum
of the factors is odd or even since the sum of any number of even factors is always even.
This means to determine if the sum of the positive factors is even or odd, we need only
consider the odd factors. If there is an odd number of odd factors, then the sum of the
positive factors will be odd. Otherwise, it will be even.

If d is an odd factor of n = 2km, then d must be a factor of m. Conversely, if d is a factor
of m, then d is an odd factor of n. Thus, the number of odd factors of n = 2km is equal to
the number of odd factors of m. We are assuming that m is odd, so it has an odd number
of positive factors if and only if it is a perfect square (by the previous case). Therefore, n
has an odd number of odd factors if and only if m is a perfect square.

Putting the cases together, we have that every positive integer n can be written in the
form 2km where k is a non-negative integer and m is an odd positive integer. Door n will
be open after all 100 steps if and only if m is a perfect square.

Thus, Door n will be open after all 100 steps if and only if n is the product of a power
of 2 and an odd perfect square. This description can be simplified even more. Suppose
n = 2km where k is non-negative and m is an odd perfect square. This means m = r2 for

some r. If k is even, then n = 2km = 2kr2 =
(
2

k
2 r
)2

, so n itself is a perfect square. If k is

odd, then k − 1 is even, so n = 2km = 2
(
2k−1r2

)
= 2

(
2

k−1
2 r

)2
, so n is two times a perfect

square.

We can now say that Door n will be open after all 100 steps if and only if n is a perfect
square or n is two times a perfect square.

(c) For this part, we still need to identify whether Door n, after n steps, has been toggled an
even or an odd number of times. It will be open if and only if it has been toggled an odd
number of times.

In the first n steps, Door n gets toggled τ(d) times for every factor d of n. From part (a),
we know that τ(d) is even unless d is a perfect square. By reasoning we have used earlier,
this means that Door n will be open after n steps if and only if an odd number of perfect
squares divide n.

Every positive integer n can be written uniquely in the form pe11 p
e2
2 · · · p

ek
k where the pi are

distinct prime numbers and the ei are positive integers. A positive integer d is a factor
of n if and only if d = pf11 p

f2
2 · · · p

fk
k for some integers fi with 0 ≤ fi ≤ ei for each i. For

d to be a perfect square, each of the fi must be even. To count the number of factors of

2



n that are perfect squares, we can count how many even integers there are from 0 to ei
inclusive for each i, then take the product of these values. This is because we obtain a
perfect square factor for every choice of even integers fi, and the choices are independent.

The product of positive integers is odd if and only if all of the integers being multiplied
together are odd. Thus, for n = pe11 p

e2
2 · · · p

ek
k to have an odd number of perfect-square

factors, it must be true that for each i there is an odd number of even integers between 0
and ei inclusive. For a fixed i, we consider four cases. In each case, we will determine how
many even positive integers there are between 0 to ei inclusive.

Case 1: ei = 4r for some integer r. In this case, 0, 2, 4, . . . , 4r− 2, 4r are the even integers
from 0 to ei inclusive. There are 4r

2
+ 1 = 2r + 1 of them, so in this case, there is an odd

number of choices for fi.

Case 2: ei = 4r + 1 for some integer r. In this case, 0, 2, 4, . . . , 4r − 2, 4r are the even
integers from 0 to ei inclusive. By the same calculation as Case 1 above, there is an odd
number of choices for fi.

Case 3: ei = 4r+2 for some integer r. In this case, the even integers from 0 to ei inclusive
are 0, 2, 4, . . . , 4r, 4r + 2. There are 2r + 2 integers in this list, so there is an even number
of choices for fi.

Case 4: ei = 4r+3 for some integer r. In this case, the even integers from 0 to ei inclusive
are the same as those in Case 3, so there is again an even number of choices for fi.

By the reasoning given before we considered the cases, we get that Door n will be open
after n steps if and only if each ei is either a multiple of 4 or one more than a multiple of
4.

For the given integer K = 2934513712, each exponent has this property, so Door K will be
open after K steps.
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Problem of the Month
Problem 6: March 2022

Problem

In this problem, we will explore the following construction: Start with the positive real number
a1 = 1 and an infinite sequence m1,m2,m3, . . . of negative slopes that are all distinct. For n ≥ 1,
we define an+1 from an as follows.

• For odd n, an+1 is the x-intercept of the line with slope mn through (0, an).

• For even n, an+1 is the y-intercept of the line with slope mn through (an, 0).

The diagram below illustrates this. The line through (0, a1) and (a2, 0) has slope m1, the line
through (a2, 0) and (0, a3) has slope m2, and so on.

a1

a2

a3

a4

a5

a6

(a) Suppose that mn = − 1

2n
for all n ≥ 1.

(i) Compute a2, a3, a4, and a5.

(ii) Find a general formula for an. You will likely need a separate formula for even n and
odd n. Describe what happens to an as n gets large.

(b) Suppose that mn = − 1

2
1
2n

+1
for all n. [The exponent in the denominator is 1

2n
+ 1]

(i) Find a general formula for an.

(ii) Describe what happens to an as n gets large.

(c) Let u and v be arbitrary positive real numbers with u 6= 1. Give a sequence of slopes so that
the sequence a1, a3, a5, a7, . . . approaches u and the sequence a2, a4, a6, a8, . . . approaches v.
Remember that the sequence of slopes should not contain any repetitions.

(d) Suppose mn = − 1

n
for all n ≥ 1.

(i) Find an integer n so that an <
1

100
.

(ii) Find an integer n so that an > 100.



Hint

Before attempting any of the problems, it might useful to show that an+1 can be expressed in
terms of an and mn.

(b) In parts (i) and (ii), try computing the first few an and looking for a pattern. Do you notice
a familiar type of series forming in the exponents?

(b) If you are comfortable with logarithms, you might find that it simplifies some calculations
to define An = log2(an) and work with the An instead. If you can find a general formula for
An, then you can find a general formula for an by using that an = 2An .

(c) Use the idea from part (b) to construct the sequence of slopes. What happens when you

change the
1

2n
+ 1 in the exponent to

1

2n
+ c for some c 6= 1?

(d) To start, find a general formula for an. A separate formula for even n and odd n will probably

be useful. For odd n, try to show that (an)2 is less than
1

n− 1
. Can you do something similar

for even n?



Problem of the Month
Solution to Problem 6: March 2022

As suggested in the hint, we will first show how an+1 can be obtained directly from an and mn.
We will consider the even and odd cases separately. Consider the diagram from the problem
statement:

a1

a2

a3

a4

a5

a6

When n is odd, we have by definition that the slope of the line through (0, an) and (an+1, 0) is

mn. This means mn =
an − 0

0− an+1

=
an
−an+1

. Solving for an+1 gives an+1 = − an
mn

.

When n is even, the slope of the line through (0, an+1) and (an, 0) has slope mn. This means

mn =
an+1 − 0

0− an
=

an+1

−an
, which implies an+1 = −anmn.

Putting these cases together, we get that

an+1 =


− an
mn

if n is odd

−anmn if n is even

(1)

Note that since the mn are negative, they are non-zero. As well, a1 = 1 is nonzero, so every an is
nonzero since each is obtained from the previous by either multiplying or dividing by a non-zero
slope.

(a) (i) Using Equation (1) and that a1 = 1, we get

a2 = − a1
m1

= − 1

−1
2

= 2 a3 = −a2m2 = −2

(
− 1

22

)
=

1

2

a4 = − a3
m3

= −
1
2

− 1
23

= 4 a5 = −a4m4 = −4

(
− 1

24

)
=

1

4

(ii) Based on the calculations in (i), we might guess that the sequence a1, a2, a3, a4, . . . is

1, 2,
1

2
, 22,

1

22
, 23,

1

23
, 24,

1

24
, . . .

1



and after a bit of thought, this can be expressed more precisely as

an =


1

2
n−1
2

if n is odd

2
n
2 if n is even

(2)

We will verify that Equation (2) holds using mathematical induction. Using the
calculations in part (i), it can be checked that Equation (2) holds when n = 1, n = 2,
n = 3, n = 4, and n = 5. We will now show that if Equation (2) is true for some
positive integer k, then it is true for k+1. By the principle of mathematical induction,
this will imply that it is true for all positive integers.

Suppose k is a positive integer and that Equation (2) is true for n = k. We will
consider two cases:

Case 1: k is odd.

Since Equation (2) holds for n = k, we have that ak =
1

2
k−1
2

. By Equation (1), we also

have that ak+1 = − ak
mk

. Using these equations and that mk = − 1

2k
, we can calculate

ak+1 = − ak
mk

= −

1

2
k−1
2

− 1

2k

=
2k

2
k−1
2

= 2k− k−1
2 = 2

k+1
2

and since k is odd, k + 1 is even, so the above calculation shows that Equation (2)
holds when n = k + 1.

Case 2: k is even.
Since Equation (2) holds for n = k, we have that ak = 2

k
2 . By Equation (1), we also

have that ak+1 = −akmk. Similar to Case 1, we get

ak+1 = −akmk = −2
k
2

(
− 1

2k

)
= 2

k
2
−k =

1

2
k
2

=
1

2
(k+1)−1

2

and since k + 1 is odd, this shows that Equation (2) holds for k + 1.

As mentioned above, this establishes that Equation (2) holds for all positive integers
n.

As n gets large, the terms an are getting larger and larger without bound for even n
and are approaching 0 for odd n.

(b) (i) In this part, we will make use of logarithms to simplify some of the calculations. In
fact, you might want to go back and try part (a) again using logarithms since they
are useful there too!

Specifically, we will define An = log2(an) for each n ≥ 1. You may wish to spend
some time convincing yourself that an is always positive which implies that there is
no issue with taking its logarithm.

2



With An defined, we will apply Equation (1) with logarithm rules to get related
equations for An. When n is odd, we get

An+1 = log2(an+1) = log2

(
− an
mn

)
= log2(an)− log2(−mn)

= An − log2

(
1

2
1
2n

+1

)
= An + log2

(
2

1
2n

+1
)

= An +
1

2n
+ 1

When n is even, we get

An+1 = log2(an+1) = log2 (an(−mn))

= log2(an) + log2

(
1

2
1
2n

+1

)
= An −

1

2n
− 1

Keep in mind that mn is negative, so −mn is positive. Putting these equations
together, we get

An+1 =


An + 1

2n
+ 1 if n is odd

An − 1
2n
− 1 if n is even

(3)

Now observe that A1 = log2(a1) = log2(1) = 0. From this observation and Equa-
tion (3) we get

A2 = A1 +
1

2
+ 1 A3 = A2 −

1

22
− 1

=
1

2
+ 1 =

1

2
− 1

22

A4 = A3 +
1

23
+ 1 A5 = A4 −

1

24
− 1

=
1

2
− 1

22
+

1

23
+ 1 =

1

2
− 1

22
+

1

23
− 1

24

Remark: At this point, especially if you are uncomfortable with logarithms, you

may want to verify directly that a2 = 2
1
2
+1, a3 = 2

1
2
− 1

22 , a4 = 2
1
2
− 1

22
+ 1

23
+1, and

a5 = 2
1
2
− 1

22
+ 1

23
− 1

24 .

From the emerging pattern, we guess that

A2r+1 =
1

2
− 1

22
+

1

23
−+ · · ·+ 1

22r−1
− 1

22r

for all r ≥ 0 and that

A2r = 1 +
1

2
− 1

22
+

1

23
−+ · · · − 1

22r−2
+

1

22r−1

3



for all r ≥ 1.

Using a trick for finding the sum of a geometric series, if we fix r ≥ 1 and set

X =
1

2
− 1

22
+

1

23
−+ · · · − 1

22r−2
+

1

22r−1

then we have

2X = 1− 1

2
+

1

22
− 1

23
+− · · · − 1

22r−3
+

1

22r−2
.

When the two equations above are added, most of the terms cancel and we are left

with 3X = 1 +
1

22r−1
or X =

1

3

(
1 +

1

22r−1

)
.

We now use this formula to refine our guesses to

A2r+1 = X − 1

22r

=
1

3

(
1 +

1

22r−1

)
− 1

22r

=
1

3

(
1 +

2

22r
− 3

22r

)
=

1

3

(
1− 1

22r

)
for r ≥ 0, and similarly

A2r = 1 + X

= 1 +
1

3

(
1 +

1

22r−1

)
=

1

3

(
4 +

1

22r−1

)
and these two guesses can be combined to get

An =


1
3

(
1− 1

2n−1

)
if n is odd

1
3

(
4 + 1

2n−1

)
if n is even

(4)

It is easily checked that Equation (4) holds for n = 1, n = 2, n = 3, and n = 4. As
in part (a), we will use induction to prove that Equation (4) holds for all positive
integers n.

Assume that Equation (4) holds for some positive integer k. If k is odd, Equation (4)

4



means that Ak = 1
3

(
1− 1

2k−1

)
. Using Equation (3), we get

Ak+1 = Ak +
1

2k
+ 1

=
1

3

(
1− 1

2k−1

)
+

1

2k
+ 1

=
1

3

(
1− 1

2k−1
+

3

2k
+ 3

)
=

1

3

(
4− 2

2k
+

3

2k

)
=

1

3

(
4 +

1

2k

)
which confirms that Equation (4) holds for the even integer k + 1. If k is even,
a similar calculation shows that Equation (4) holds for k + 1. By mathematical
induction, Equation (4) holds for all positive integers n.

Since An = log2(an), we have 2An = an. Therefore,

an =


2

1
3(1− 1

2n−1 ) if n is odd

2
1
3(4+ 1

2n−1 ) if n is even

(5)

(ii) For large values of n, the quantity
1

2n−1
gets very close to 0. Thus, for large odd

values of n, an gets very close to 2
1
3 = 3
√

2. For large even values of n, an gets very
close to 2

4
3 = 2 3

√
2.

Notice that a1, a3, a5, . . . is a sequence of y-intercepts. As observed above, this se-
quence approaches the quantity 3

√
2. Similarly, the sequence a2, a4, a6, . . . is a se-

quence of x-intercepts and it approaches 2 3
√

2. The line through the points (0, 3
√

2)

and (2 3
√

2, 0) has slope −1
2
. For large n,

1

2n
is close to 0, so mn is close to − 1

21
= −1

2
,

which is exactly the slope computed in the previous sentence. You might want to
think about why these values are the same.

(c) We will generalize the idea from part (b) above. For now, fix a positive number b 6= 1 and

a real number c and set mn = − 1

b
1
2n

+c
. By defining An = logb(an), an almost identical

calculation to the one in part (b) shows that

an =


b

1
3(1− 1

2n−1 ) if n is odd

b
1
3(3c+1+ 1

2n−1 ) if n is even

(6)

for every positive integer n.

As n goes to infinity,
1

2n−1
goes to 0, so the sequence a1, a3, a5, a7, . . . approaches b

1
3 = 3
√
b

and the sequence a2, a4, a6, a8, . . . approaches bc+
1
3 . Thus, to answer this question, we can

5



solve the system of equations

u =
3
√
b

v = bc+
1
3

The first equation implies b = u3. Notice that since u 6= 1, we indeed have b 6= 1, so the
construction above will work. Substituting b = u3 into the second equation gives v = u3c+1.
Taking logu of both sides (which can be done since u and v are both positive) and solving
gives c = 1

3
(logu(v)− 1). Thus, we get the desired result by taking

mn = − 1

b
1
2n

+c

with b = u3 and c = 1
3

(logu(v)− 1).

(d) Using Equation (1), we can compute the following first few values of an.

a1 = 1 a2 = 1 a3 =
1

2

a4 =
1× 3

2
a5 =

1× 3

2× 4
a6 =

1× 3× 5

2× 4

a7 =
1× 3× 5

2× 4× 6
a8 =

1× 3× 5× 7

2× 4× 6
a9 =

1× 3× 5× 7

2× 4× 6× 8

(i) Consider the following:

(a5)
2 =

1× 3× 1× 3

2× 4× 2× 4

=
1× 3

22
× 3

42

=
3

4
× 3

42

<
3

42

We can do similar calculations with a7 and a9 to get

(a7)
2 =

1× 3× 5× 1× 3× 5

22 × 42 × 62
(a9)

2 =
1× 3

22
× 3× 5

42
× 5× 7

62
× 7

82

=
1× 3

22
× 3× 5

42
× 5

62
=

3

4
× 15

16
× 35

36
× 7

82

=
3

4
× 15

16
× 5

62
<

7

82

<
5

62

Which shows that for k = 2, k = 3, and k = 4, we have

(a2k+1)
2 <

2k − 1

(2k)2
(7)
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By two applications of Equation (1), we get that a2k+3 = a2k+1 ×
2k + 1

2k + 2
for every k.

If we assume that Inequality (7) holds for some positive integer k ≥ 2, we have

(a2k+3)
2 = (a2k+1)

2 (2k + 1)2

(2k + 2)2

<
2k − 1

(2k)2
× (2k + 1)2

(2k + 2)2
(Inequality (7))

=
(2k − 1)(2k + 1)

(2k)2
× 2k + 1

(2k + 2)2

=
(2k)2 − 1

(2k)2
× 2(k + 1)− 1

(2(k + 1))2

<
2(k + 1)− 1

(2(k + 1))2

which says that Inequality (7) holds for k + 1. Since the odd integers are exactly

those of the form 2k + 1 for some integer k, we have shown that (an)2 <
n− 2

(n− 1)2

when n ≥ 3 is odd. Since n− 2 < n− 1, we can simplify further to get that get that

(an)2 <
n− 1

(n− 1)2
=

1

n− 1
. It follows that an <

1√
n− 1

when n ≥ 3 is odd. Setting

n = 10001, we get that

a10001 <
1√

10001− 1
=

1√
10000

=
1

100

Note that n = 10001 is not the smallest n for which an <
1

100
. You may want to

write a computer program to find the very first n for which an <
1

100
.

The inequality an <
1√
n− 1

for odd n shows us that the sequence a1, a3, a5, a7, . . .

is approaching 0. This is because the quantity
√
n− 1 goes to infinity as n goes to

infinity, so its reciprocal goes to 0. The term an is between 0 and something that is
getting closer and closer to 0, so it must also go to 0.

(ii) In much the same way as part (i), it can be shown that for even n, we have

(an)2 =
32

2× 4
× 52

4× 6
× 72

6× 8
× · · · × (n− 3)2

(n− 4)× (n− 2)
× (n− 1)2

2× (n− 2)

>
(n− 1)2

2× (n− 2)

>
(n− 2)2

2(n− 2)

which implies an >

√
n− 2√

2
when n is even. If we take n = 20002, we get

a20002 >

√
20002− 2√

2
=
√

10000 = 100

again, n = 20002 is not the smallest n for which an > 100.
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Problem of the Month
Problem 7: April 2022

Problem

In this problem, a 3-factorization of a positive integer n is a triple (a, b, c) of positive integers such
that abc = n. Two 3-factorizations will be regarded as the same if one of them can be obtained by
reordering the integers in the other. For example, (1, 2, 3) and (2, 3, 1) are the same 3-factorization
of 6. The sum of the 3-factorization (a, b, c) is a + b + c.

(a) Suppose n has two different 3-factorizations (a, b, c) and (d, e, f) with the same sum. Prove
that at most one of these 3-factorizations contains the integer 1.

(b) Suppose n has two different 3-factorizations with the same sum. Prove that n has at least
four prime factors. [We allow for repetition here. For instance, 24 = 2 × 2 × 2 × 3 has four
prime factors, even though it only has two distinct prime factors.]

(c) Find the smallest integer n that has two different 3-factorizations with the same sum.

(d) Find an infinite family n1, n2, n3, . . . of positive integers satisfying

• For each i, ni has two different 3-factorizations with the same sum.

• For each i and j, gcd(ni, nj) = 1.

(e) Challenge: Can you find an integer with three different 3-factorizations having the same
sum? Can you find infinitely many such integers? Some direction on this will be given in
the hint. You may wish to try to write a computer program to get started.



Hint

(a) Assuming that a + b + c = d + e + f , abc = def , and a = d = 1, try to prove that either
b = e and c = f or b = f and c = e.

(b) Show that n cannot have two different 3-factorizations with the same sum if

(i) n is prime.

(ii) n is the product of two prime numbers.

(iii) n is the product of 3 prime numbers.

Part (a) can be used to eliminate much of the case work.

(c) The answer is less than 50. Part (b) can be used to narrow the search considerably.

(d) Use the prime factorization of the integer found in part (c) as a hint to find more integers.

(e) The smallest integer that has three different 3-factorizations with the same sum is 1200.
The relevant 3-factorizations are (4, 15, 20), (5, 10, 24), and (6, 8, 25). The next few positive
integers that have three different 3-factorizations with the same sum are 1386, 1680, 1872,
2880, 2970, 3024, 3264, 3360, 3600, 3960, and 4320. These were found using a computer
search, and the same computer search suggests that such integers are not especially rare
(despite seeming a bit tricky to find by hand). Perhaps trying to find a pattern in the list
above will lead to an infinite family or to some other interesting observations!



Problem of the Month
Solution to Problem 7: April 2022

(a) Assume that abc = def and that a + b + c = d + e + f . To prove the claimed fact, we will
further assume that a = d = 1 and deduce that either b = e and c = f or b = f and c = e.
This will prove that the 3-factorizations (a, b, c) and (d, e, f) are the same. Keep in mind
that the integers in a 3-factorizations are positive.

With a = d = 1, the assumed equations become bc = ef and b+ c = e+ f . Squaring both
sides of the second equation leads to b2+2bc+c2 = e2+2ef +f 2. Since bc = ef , 4bc = 4ef ,
and if we subtract this from b2+2bc+c2 = e2+2ef +f 2 we get b2−2bc+c2 = e2−2ef +f 2

which factors as (b− c)2 = (e− f)2. Taking square roots, this means |b− c| = |e− f |, so
either b− c = e− f or b− c = f − e.

Suppose b−c = e−f . Adding b+c = e+f gives 2b = 2e or b = e. Similarly, if b−c = f−e,
then 2b = 2f or b = f . Thus, either b = e or b = f . If b = e, then b + c = e + f implies
c = f . If b = f , then b + c = e + f implies c = e. Therefore, either b = e and c = f or
b = f and c = e.

We have shown that if two 3-factorizations of an integer each contain a 1 and have the
same sum, then they must be the same 3-factorization. Therefore, it is impossible for two
different 3-factorizations of an integer to have the same sum and both contain 1.

(b) Suppose n is either prime or is the product of 2 prime numbers. Then any 3-factorization of
n must contain a 1, so part (a) implies that it is impossible for two different 3-factorizations
of n to have the same sum.

We now suppose n = pqr where p, q, and r are prime, some or all of which may be
equal. The only 3-factorization of n that does not include a 1 is (p, q, r), so if there
are two 3-factorizations of n with the same sum, then part (a) implies that one of these
3-factorizations is (p, q, r).

The other 3-factorizations of n are (1, 1, pqr), (1, p, qr), (1, q, pr), and (1, r, pq). We will
show that none of the equations

p + q + r = 1 + 1 + pqr

p + q + r = 1 + p + qr

p + q + r = 1 + q + pr

p + q + r = 1 + r + pq

can be satisfied when p, q, and r are prime.

First, suppose p + q + r = 1 + 1 + pqr for some prime numbers p, q, and r. By possibly
relabelling, we can assume that r ≥ q and r ≥ p. Since p and q are both prime, p ≥ 2
and q ≥ 2, so pq ≥ 4, which means pqr ≥ 4r. Therefore, 1 + 1 + 4r ≤ 1 + 1 + pqr, but
we are assuming that 1 + 1 + pqr = p + q + r, so we have 1 + 1 + 4r ≤ p + q + r. Since
r ≥ q and r ≥ p, this means 2+4r ≤ 3r, but this is impossible since r is a positive integer.
Therefore, it is impossible that p + q + r = 1 + 1 + pqr when p, q, and r are prime.

1



Now assume that p + q + r = 1 + p + qr for some integers p, q, and r. This simplifies to
qr − q − r + 1 = 0 or (q − 1)(r − 1) = 0, which means that either q = 1 or r = 1. Since 1
is not a prime number, the integers p, q, and r cannot all be prime, and so the equation
cannot hold if p, q, and r are all prime.

By symmetry, p + q + r = 1 + q + pr and p + q + r = 1 + r + pq also cannot be satisfied
when p, q, and r are all prime.

We have now shown that if n is prime, the product of two prime numbers, or the product
of three prime numbers, then it cannot have two different 3-factorizations with the same
sum. Therefore, if n has two different 3-factorizations with the same sum, then it must
have at least four prime factors.

(c) By part (b), we can restrict our search to positive integers that are the product of at
least four prime numbers. It can be checked that the first five positive integers with this
property are 16, 24, 32, 36, and 40. In fact, 36 is the integer we seek, but we will go
through the possibilities above in order to verify that 36 is indeed the smallest.

The 3-factorizations of 16 are (1, 1, 16), (1, 2, 8), (1, 4, 4), and (2, 2, 4). Their sums are 18,
11, 9, and 8, no two of which are the same, so 16 does not have two different 3-factorizations
with the same sum.

The 3-factorizations of 24 are (1, 1, 24), (1, 2, 12), (1, 3, 8), (1, 4, 6), (2, 2, 6), and (2, 3, 4).
Their sums are 26, 15, 12, 11, 10, and 9, no two of which are the same, so 24 does not
have two different 3-factorizations with the same sum.

The 3-factorizations of 32 are (1, 1, 32), (1, 2, 16), (1, 4, 8), (2, 2, 8), and (2, 4, 4). Their
sums are 34, 19, 13, 12, and 10, no two of which are the same, so 32 does not have two
different 3-factorizations with the same sum.

Among the 3-factorizations of 36 are (1, 6, 6) and (2, 2, 9), both of which have a sum of 13.
They are different 3-factorizations, and so we have shown that 36 is the smallest positive
integer that has two different 3-factorizations with the same sum.

(d) By part (b), each of the ni needs to be the product of at least four prime numbers. The
factorization of 36 is 2232, so we will try to generalize this.

We consider an integer of the form x2y2 for some integers x and y, both larger than 1. We
will not assume that x and y are prime. Among the 3-factorizations of x2y2 are (x, x, y2)
and (1, xy, xy). If their sums are equal, then 2x + y2 = 1 + 2xy, which can be rearranged
to get y2 − 2xy + 2x − 1 = 0 and then factored as (y − 1)(y − 2x + 1) = 0. From here,
we can see that the equation will be satisfied if y = 2x − 1. Thus, if y = 2x − 1, then
(x, x, y2) and (1, xy, xy) have the same sum. As well, as long as we assume that x > 1,
then y > 1 as well, and these two 3-factorizations are guaranteed to be different since one
of them contains 1 and the other does not.

Thus, for each integer x > 1, the integer x2(2x− 1)2 has two distinct 3-factorizations with
the same sum. The table below summarizes the first few examples.
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x x2(2x− 1)2 (x, x, (2x− 1)2) (1, x(2x− 1), x(2x− 1))

2 36 (2, 2, 9) (1, 6, 6)
3 225 (3, 3, 25) (1, 15, 15)
4 784 (4, 4, 49) (1, 28, 28)
5 2025 (5, 5, 81) (1, 45, 45)

However, we need to do something more to get the infinite family we seek since, for example,
2025 is a multiple of 225, so gcd(225, 2025) = 225 6= 1.

To finish the problem, we will use the following fact: For any positive integer n, the integer
M = (n + 1)2(2n + 1)2 satisfies gcd(n,M) = 1.

To see this, suppose k ≥ 1 is a factor of both n and (n + 1)2(2n + 1)2. This means there
are integers a and b with n = ka and (n+ 1)2(2n+ 1)2 = 4n4 + 12n3 + 13n2 + 6n+ 1 = kb.
Thus,

1 = kb− (4n4 + 12n3 + 13n2 + 6n)

= kb− n(4n3 + 12n2 + 13n + 6)

= kb− ka(4n3 + 12n2 + 13n + 6)

= k[b− a(4n3 + 12n2 + 13n + 6)]

and this shows that 1 is a multiple of k because b− a(4n3 + 12n2 + 13n + 6) is an integer.
Therefore, the only possible value of k is 1, so gcd(n, (n + 1)2(2n + 1)2) = 1.

This fact implies that if k > 1 is any divisor of n, then gcd(k, (n+ 1)2(2n+ 1)2) = 1 since,
if k and (n + 1)2(2n + 1)2 have a divisor greater than 1 in common, then so do n and
(n + 1)2(2n + 1)2. We will use this to construct the infinite family of integers we seek.

We start with n1 = 22(2(2) − 1)2 = 36, which has two different 3-factorizations with the
same sum. Next, set n2 = (n1 + 1)2(2(n1 + 1)−1)2, which has two distinct 3-factorizations
since it is of the form x2(2x − 1)2 with x = n1 + 1. Expanding the second parenthetical
expression, we have n2 = (n1 + 1)2(2n1 + 1)2, and from the fact above, gcd(n1, n2) = 1.

Next, set n3 = (n1n2 + 1)2(2(n1n2 + 1)− 1)2 = (n1n2 + 1)2(2n1n2 + 1)2. By construction,
n3 has two different 3-factorizations with the same sum. Moreover, gcd(n1n2, n3) = 1, so
gcd(n1, n3) = gcd(n2, n3) = 1.

Continuing in this way, for each k ≥ 2 we can define nk+1 from n1, . . . , nk by setting

nk+1 = (n1n2 · · ·nk + 1)2(2n1n2 · · ·nk + 1)2

By construction, nk+1 will have two different 3-factorizations with the same sum. As well,
gcd(n1n2 · · ·nk, nk+1) = 1, so gcd(ni, nk+1) = 1 for all i ≤ k.

(e) We will outline two different ways to build infinite families of positive integers that have
three different 3-factorizations with the same sum.

The first approach is to take any known positive integer that has three different 3-factorizations
with the same sum and multiply this integer each of the perfect cubes. For example, as
given in the hint, the integer 1200 has 3-factorizations (4, 15, 20), (5, 10, 24), and (6, 8, 25),
each with a sum of 39. For every positive integer n, the positive integer 1200n3 has 3-
factorizations (4n, 15n, 20n), (5n, 10n, 24n), and (6n, 8n, 25n). These three factorizations
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are all different and have the sum 39n. Each positive integer gives a different value of
1200n3, so this indeed gives an infinite family of positive integers, each of which has three
different 3-factorizations with the same sum.

In the second approach, for each positive integer n we define p(n) to be the integer
p(n) = n(n + 2)(n + 4)(n + 5)(n + 6)(n + 7). The integer p(n) has 3-factorizations(

n(n + 7), (n + 2)(n + 4), (n + 5)(n + 6)
)

= (n2 + 7n, n2 + 6n + 8, n2 + 11n + 30)(
n(n + 6), (n + 2)(n + 5), (n + 4)(n + 7)

)
= (n2 + 6n, n2 + 7n + 10, n2 + 11n + 28)(

n(n + 5), (n + 2)(n + 7), (n + 4)(n + 6)
)

= (n2 + 5n, n2 + 9n + 14, n2 + 10n + 24)

and observe that the sums of these 3-factorizations, respectively, are

(n2 + 7n) + (n2 + 6n + 8) + (n2 + 11n + 30) = 3n2 + 24n + 38

(n2 + 6n) + (n2 + 7n + 10) + (n2 + 11n + 28) = 3n2 + 24n + 38

(n2 + 5n) + (n2 + 9n + 14) + (n2 + 10n + 24) = 3n2 + 24n + 38

which are all the same. For example, when n = 1, we get p(1) = 1×3×5×6×7×8 = 5040
and the 3-factorizations are (8, 15, 42), (7, 18, 40), and (6, 24, 35).

The calculations above show that, for each n, p(n) has three 3-factorizations of n with
the same sum. However, there is a possibility that these 3-factorizations are not different.
In fact, this problem will never occur, and as long as n 6= 8, not only will the given 3-
factorizations of p(n) be different, the nine integers occurring in them will all be different.

Consider the nine integers in the 3-factorizations. Each is a quadratic in n with a leading
coefficient of 1 and none of the quadratics are the same. If an integer n has the property
that two of the nine integers are the same, then we have n2 + an + b = n2 + cn + d for
some a, b, c, and d. The n2 cancels, so in fact we have a linear equation in n. Thus, for
each pair of the nine integers, there is at most one integer n for which those two integers
are equal. For example, n2 + 7n = n2 + 7n + 10 implies 0 = 10, so there are no integers
n that will make n2 + 7n = n2 + 7n + 10 equal to each-other. As another example, if
n2 + 6n+ 8 = n2 + 10n+ 24, then −16 = 4n, which implies n = −4, which is not a positive
integer. In fact, of all of the 36 possible such equations, n2 + 7n = n2 + 6n + 8 is the only
one with a positive integer solution, which is n = 8. Therefore, for every positive integer
n, the given construction gives an integer that has three different 3-factorizations with the
same sum.

For a hint as to how this construction was discovered, the key was to find a set of 5 positive
integers with the following property: there are three different ways to choose four of the
integers and break those four into two pairs so that the sum of the products of those pairs
is the same. For example, the list 2, 4, 5, 6, 7 has this property because 2 × 4 + 5 × 6,
2× 5 + 4× 7, and 2× 7 + 4× 6 are all equal to 38. Can you find another such set of five
integers?

One final thought on this construction. For every integer n, either n is even or n+5 is even,
which implies that p(n) is even for all integer n. This means that gcd(p(n), p(m)) ≥ 2 for
all positive integers m and n, so the infinite family generated in this way will not satisfy
the condition in part (d). At the time of writing, we still have not found an infinite list
n1, n2, n3, . . . of positive integers satisfying gcd(ni, nj) = 1 for all i 6= j, each of which has
three different 3-factorizations with the same sum.
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Problem of the Month
Problem 8: May 2022

Problem

In each part of this problem, a unit cube is positioned with its centre at the origin and is rotated
about the x-axis so that it sweeps out a new “solid of revolution”. To visualize this solid, you
might imagine a cube being rotated very quickly about a fixed axis to produce an illusion of the
solid. [This is the same phenomenon as when a rotating propellor or fan blade looks like a disk.]
For example, if the cube is originally positioned so that the x-axis passes through the centres of
two opposite faces, then the solid of revolution is a cylinder.

The solid of revolution depends on the original position of the cube. In each part, information
is given to describe the original position of the cube and the goal is to describe the region in the
(x, y)-plane intersected by the solid of revolution.

(a) The cube is positioned so that the x-axis passes through the centres of two opposite faces.
As mentioned in the preamble, the solid is a cylinder.

(b) The cube is positioned so that the x-axis passes through the midpoints of two opposite edges
of the cube (that is, two edges that are parallel and are not edges of the same face).

(c) The cube is positioned so that the x-axis passes through two opposite vertices of the cube
(that is, two vertices that are not on a common face).

Below, from left to right, are diagrams of the original position of the cube for parts (a), (b), and
(c), respectively. In order to avoid clutter in the diagrams, only the x-axis is included.

Notes:

• In the solutions, regions in the (x, y)-plane will have descriptions of the form “the region
between x = a and x = b above the graph of y = f(x) and below the graph of y = g(x). You
may have some other way of describing the regions.

• Solids of revolution are studied in calculus. If you already know some calculus and would
like an added challenge, you might like to try to compute the area of the regions you find,
or even the volumes of the solids of revolution.



Hint

(a) The cross sections of the cube in this part are all unit squares. What length in the square is
equal to the diameter of the base of the cylinder swept out by the rotating the cube?

(b) In this part, the cross sections are always rectangles, but their dimensions vary depending
on where the cross section is taken. Here is a link to a GeoGebra applet to help visualize
the rotating cube and the cross sections. The “Rotate” option will cause the cube to rotate
around the axis. The “Show Cross Section” option will show the cross section when the cube
is sliced by a plane perpendicular to the axis. The plane can be moved to see different cross
sections. The “Show Trace” option will show the solid traced out by the cube as it rotates.

(c) In this part, the cross sections are either triangles or hexagons, depending on how close the
cross section is taken to the vertices that are fixed on the axis. The cube has 120◦ rotational
symmetry, which means that if it is rotated by 120◦, it occupies exactly the same space
that it occupied before it was rotated. The cross sections must also have 120◦ rotational
symmetry. It may be useful to think about what sorts of triangles and hexagons can have
such symmetry. This is a link to another GeoGebra applet that works in essentially the same
way as the one for part (b).

https://www.geogebra.org/m/vxckd3zd
https://www.geogebra.org/m/sakc7dwc


Problem of the Month
Solution to Problem 8: May 2022

In each part, the solid will be a figure that has rotational symmetry about the x-axis. For each
x-value, this means if we slice the solid by a plane perpendicular to the x-axis at that x-value,
the cross section of the solid will be a circle with its centre on the x-axis. Thus, to describe the
solid of revolution in each part, we need to determine, for each x-value, the radius of this cross
sectional circle. To do this, we will examine the corresponding cross sections of the cube. The
radius of the circular cross section of the solid of revolution will be the distance from the x-axis
to the point in the cross section of the cube that is farthest from the x-axis. The GeoGebra
applets provided in the hint may be useful for visualizing these cross sections.

The approach in each part will be as follows:

• Determine the range of x-values occupied by the cube, which will be called I.

• For each a ∈ I, describe the cross section of the cube when it is sliced by the plane with
equation x = a. [That is, the plane perpendicular to the x-axis that intersects the x-axis
at x = a.]

• Let f be the function with domain I so that for each a ∈ I, f(a) is the largest possible
distance to the x-axis from a point in the cross section of the cube at x = a.

• The solid of revolution is that which has circular cross sections with radius f(a) at each
a ∈ I.

• The region in the xy-plane is the set of points with x ∈ I that are above the graph of
y = −f(x) and below the graph of y = f(x).

(a) Since the cube is centred at the origin and its sides have length 1, the cube is initially

positioned along the interval I =

[
−1

2
,
1

2

]
. Because the x-axis is perpendicular to two

faces of the cube, when we slice the cube by any plane that is perpendicular to the x-axis,
the cross section is a unit square with its centre on the x-axis.

In any square, the points that are farthest from the centre are the four vertices. The
distance from the centre to a vertex is half the length of the diagonal of the square. By
the Pythagorean theorem, the length of the diagonal of a unit square is

√
12 + 12 =

√
2,

so the distance from the centre of the square to a vertex is

√
2

2
.

Thus, for any a ∈
[
−1

2
,
1

2

]
, we have that f(a) =

√
2

2
. The solid of revolution is the cylinder

that is parallel to the x-axis that has radius

√
2

2
and height 1. The cylinder intersects the

xy-plane in a rectangle, and that rectangle is the set of points that are bound by the

horizontal lines with equations y =

√
2

2
and y = −

√
2

2
on the interval

[
−1

2
,
1

2

]
. This

region is pictured below.
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x

y x = 1
2

x = −1
2

y =
√
2
2

y = −
√
2
2

(b) The distance between the midpoints of two opposite edges of a cube is the same as the
length of the diagonal of any face. By the computation in part (a), this length is

√
2. Since

the cube is centred at the origin, the interval I in this part is

[
−
√

2

2
,

√
2

2

]
. In the diagram

below, the cube is seen in its original position. On the left, the entire cube is pictured. On
the right, a piece has been removed to show a generic cross section, which is shaded.

The shaded cross section appears to be a rectangle. To explain why it is indeed a rectangle,
we first note that the plane with equation x = a with a > 0 intersects four faces of the
cube, and each of these intersections gives a line segment. This means that the cross
section is a quadrilateral. To see that this quadrilateral is indeed a rectangle, we will label
some points on the surface of the cube. The vertices of the cube that are on the plane
with equation x = 0 will be labelled A, B, C, and D with A at the “top front”, B at the
“top back”, C at the “bottom back”, and D at the “bottom front”. As well, the points
where the plane with equation x = a intersect the edges of the cube will be labelled E, F ,
G, and H in such a way that segments AE, BF , CG, and DH all lie on edges of the cube.

A

B

C

D

E

F

G
H

The plane through A, B, C, and D is perpendicular to the x-axis because of the way the
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cube is positioned. Therefore, the plane through A, B, C, and D is parallel to the plane
with equation x = a. Hence, AD, BC, FG, and EH are all parallel. By similar reasoning,
EF is parallel to HG, so EFGH is a parallelogram. As well, AD is perpendicular to
the top face of the cube, which means EH is perpendicular to the top face of the cube.
This means that EH is perpendicular to any line through E and another point in the top
face. Hence, EH is perpendicular to EF . A parallelogram with a right angle must be a
rectangle, which shows that EFGH is a rectangle. Also note that AEHD is a rectangle
for similar reasoning.

By symmetry, the centre of the rectangular cross section is on the x-axis. Thus, the circular
cross section at x = a of the solid of revolution has a radius equal to the distance from the
centre of the rectangular cross section of the cube to any of its four vertices. This radius is
half the length of the diagonal of the rectangular cross section, which can be found using
the Pythagorean theorem once we know the side lengths, so it remains to determine the
dimensions of the cross section at x = a, which we expect to depend on the value of a. By
symmetry, it is enough to consider a > 0.

As noted above, AEHD is a rectangle, so EH = AD = 1, which is independent of the
value of a. The length of EF does depend on the value of a. Below is a diagram of the
top face of the cube. The centre of the top face has been labelled by P , the corner of the
top face that was removed in the previous diagram is labelled by R, and the point where
the line segment PR intersects EF is labelled by Q.

P Q
R

E

F

The length of PR is equal to

√
2

2
=

1√
2

because it is half the length of the diagonal of

a unit square. As well, PQ has length a by assumption, and EF is perpendicular to PQ
because PQ is parallel to the x-axis and EF is perpendicular to the x-axis. Therefore,
QR is an altitude of 4FQR. The line connecting the centre of a square to one of its
vertices must be an angle bisector, which means that ∠PRF = ∠PRE = 45◦. Since
∠FQR = ∠EQR = 90◦, we also have ∠QFR = ∠QER = 45◦, which means that 4FQR
and 4EQR are both isosceles. Therefore, QE = QR = QF , but QR =

1√
2
− a, so

EF = QE +QF = 2QR = 2

(
1√
2
− a
)

=
√

2− 2a

Therefore, the diagonal length of the rectangular cross section at x = a is

√
EH2 + EF 2 =

√
12 + (

√
2− 2a)2 =

√
3− 4

√
2a+ 4a2
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For x ≥ 0, we have that f(x) =
1

2

√
3− 4

√
2x+ 4x2. By symmetry, the function f on the

interval should be an even function on I, which means f(x) = f(−x). This means that we
can replace x by −x to determine f(x) when x < 0. After doing this, we find that f(x) is
defined piecewise by

f(x) =


1

2

√
3 + 4

√
2x+ 4x2 if −

√
2

2
≤ x < 0

1

2

√
3− 4

√
2x+ 4x2 if 0 ≤ x ≤

√
2

2

Below is a diagram of the region above the graph of y = −f(x) and below the graph of

y = f(x) on the interval

[
−
√

2

2
,

√
2

2

]
.

x

y

(√
2
2
,−1

2

)

(√
2
2
, 1
2

)

(
−
√
2
2
,−1

2

)

(
−
√
2
2
, 1
2

)

(
0,−

√
3
2

)

(
0,
√
3
2

)

(c) In this part, we observe that the distance between two opposite vertices of a cube is the
length of the hypotenuse of a right-angled triangle with one leg equal to an edge of the
cube and one leg equal to the diagonal of a face of the cube. This is pictured below.

The length of the diagonal of a unit square is
√

2, so the distance between two opposite ver-

tices of the cube is
√

(
√

2)2 + 12 =
√

3. Thus, in this part, the interval is I =

[
−
√

3

2
,

√
3

2

]
.

In this part, the cross sections come in two “types”. If x is close enough to 0, then the
cross section is a hexagon. Otherwise, the cross section is an equilateral triangle.
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Consider the vertices of the cube that are to the right of the origin. By rotational symmetry,
if the cube is rotated 120◦ around the x-axis, these vertices (other than those on the x-axis)
will take each other’s positions. Therefore, they must all have the same x-coordinate, so
there is some α > 0 such that the plane with equation x = α passes through all three
of these vertices. Similarly, there is β < 0 so that the plane with equation x = β passes
through all three of the vertices of the cube that are not on the x-axis and have a negative
x-coordinate. The diagram below is of a cube positioned with two opposite vertices on
the x-axis but viewed at an angle perpendicular to the x-axis. This gives some indication
of the different cross sections and where they change type. The dashed vertical lines are
meant to represent the planes with equations x = α and x = β.

x = β x = α

(√
3
2
, 0
)(

−
√
3
2
, 0
)

Suppose α < a <

√
3

2
. The plane with equation x = a intersects three faces of the

cube, so the cross section of the cube at x = a is a triangle. The rotational symmetry
of the cube implies that this triangle has 120◦ rotational symmetry about the x-axis, and
such a triangle must be equilateral since it must have three equal angles. Similarly, if

−
√

3

2
< a < β, then the cross section at x = a is also an equilateral triangle.

For β < a < α, the plane with equation x = a intersects all 6 faces of the cube. The plane
intersects each face in a line segment, so the cross section must be a hexagon since each of
these line segments will be a side of the cross section. There is no reason to expect it to
be a regular hexagon, but it will have 120◦ rotational symmetry, which will be used later.

We will delay computing the values of α and β, though we will observe that, by symmetry,
α = −β, and it suffices to analyze the cross sections at x = a for a > 0.

To analyze the triangular cross sections, we will use the following fact.

Fact 1: Suppose tetrahedron ABCD has equilateral base 4ABC and its other three
faces satisfy ∠ADB = ∠BDC = ∠CDA = 90◦ and AD = BD = CD. If E is the point

in 4ABC so that DE is the altitude of the tetrahedron from D, then DE =
AD√

3
and

AE =
√

2DE.

Proof. By symmetry, AE = BE = CE.
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A B

C

D

E

Since 4ADB is isosceles and right-angled with hypotenuse AB, we get that AB =
√

2AD.
We also have that4AEB, 4BEC, and4CEA are all congruent by side-side-side congru-
ence. As well, ∠AEB + ∠BEC + ∠CEA = 360◦, so since they are equal by congruence,
they are all equal to 120◦. Because AE = BE, it follows that 4AEB is isosceles and that

∠ABE =
180◦ − 120◦

2
= 30◦.

Using the Sine law, we have
AE

sin 30◦
=

AB

sin 120◦
, from which it follows that

AE =
AB sin 30◦

sin 120◦
=
AB√

3
=

√
2AD√

3

We can now use the Pythagorean theorem on 4ADE to get that

DE =
√
AD2 − AE2 =

√√√√AD2 −

(√
2√
3
AD

)2

= AD

√
1− 2

3
=
AD√

3

which is one of the claims in the fact. The other now follows by rearranging the equation

above to get AD =
√

3DE then substituting into AE =

√
2AD√

3
to get

AE =

√
2AD√

3
=

√
2(
√

3DE)√
3

=
√

2DE

We can now compute the value of α as well as f(a) for each a with α < a <

√
3

2
.

When we take the cross section at x = a with α ≤ a <

√
3

2
, we have already argued that the

cross section is an equilateral triangle. Taking such a cross section “removes” a tetrahedral
corner of the cube with this cross section as its base. By rotational symmetry and the fact
that the faces of a cube are squares, the other three faces of this “removed” tetrahedron
are isosceles right-angled triangles. Thus, the tetrahedron satisfies the conditions of Fact 1.
Moreover, points E and D are on the x-axis and f(a) is equal to the length of AE.

When a = α, AD is an edge of the cube, so AD = 1 which gives DE =
AD√

3
=

1√
3

by

Fact 1. As well, α =

√
3

2
−DE, which means

α =

√
3

2
−DE =

√
3

2
− 1√

3
=

1

2
√

3
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For any a with
1

2
√

3
≤ a <

√
3

2
, the tetrahedron hasDE =

√
3

2
−a, and sinceAE =

√
2DE,

we get

f(a) = AE =
√

2DE =
√

2

(√
3

2
− a

)
=

√
3√
2
−
√

2a

While we have not yet determined how to compute f(x) for all x ∈ I, we do now have for

x ∈

[
1

2
√

3
,

√
3

2

)
that f(x) =

√
3√
2
−
√

2x. Notice that at x =

√
3

2
, f(x) = 0, which makes

sense. You may want to think about this.

Next we will examine the hexagonal cross sections for 0 ≤ a <
1

2
√

3
. We will use the

following fact.

Fact 2: Suppose that ABCDEF is a hexagon that has opposite sides parallel (that is,
AB and DE are parallel, BC and EF are parallel, and CD and FA are parallel) and has
a point G in its interior so that the hexagon has 120◦ rotational symmetry about G. Then
G is equidistant from all six vertices of the hexagon.

Proof. Below is a diagram of such a hexagon with AB and DC extended to meet at P ,
CD and FE extended to meet at Q, and EF and BA extended to meet at R. Point G is
also connected to each vertex of the hexagon as well as to P , Q, and R.

A B

C

DE

F G

P

Q

R

The fact that the hexagon has 120◦ rotational symmetry means that it also has 240◦

rotational symmetry. This means that it has 120◦ rotational symmetry both clockwise
and counterclockwise. A clockwise rotation will send A to the position of C, B to D,
C to E, D to F , E to A, and F to B. Since the rotation is around G, this implies that
GA = GC = GE and GB = GD = GF , as well as AB = CD = EF and BC = DE = FA.
Finally, by the way P , Q, and R are defined, the rotational symmetry also implies that
4PQR has 120◦ rotational symmetry about G. From an earlier argument, this implies
4PQR is equilateral and that G is equidistant from P , Q, and R.

By properties of parallel lines, we get that ∠RAF = ∠EDQ = ∠BPC, but from the
previous paragraph we have ∠BPC = ∠ARF = 60◦, so 4RAF has two angles equal to
60◦. Therefore, it is equilateral.

Since GP = GR = GQ and PQ = QR = RP , it must be that 4GPQ, 4GQR, and
4GRP are all congruent by side-side-side congruence. It follows that ∠GRQ = ∠GRP ,
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and since their sum is 60◦, they are both equal to 30◦. Let H be the point of intersection
of GR and AF . We know that ∠RAF = 60◦, and so it follows that ∠RHA = 90◦. As well,
4FRH and 4ARH are congruent by side-angle-side congruence, so FH = AH. Since
∠RHA = 90◦, so do each of ∠FHG and ∠AHG, so we now conclude that 4FHG and
4AHG are congruent by side-angle-side congruence. This means GA = GF , and since
GA = GC = GE and GB = GD = GF , it follows that G is equidistant from all six
vertices of the hexagon.

The cube has 120◦ rotational symmetry about the x-axis, and so if we take any a with

0 ≤ a <
1

2
√

3
, the hexagonal cross section must also have 120◦ rotational symmetry about

the point where the plane with equation x = a intersects the x-axis. As well, opposite
faces of the cube are parallel, so opposite sides of the hexagonal cross section must also be
parallel. By Fact 2, the six vertices of the cross section are equidistant from the x-axis.

This means that f(a) is the distance from the x-axis to any of the six points where the
plane with equation x = a intersects an edge of the cube.

Consider the diagram of the cube below. The vertices of the cube that are on the x-axis

are labelled by A and B, one of the vertices of the cube with x-coordinate equal to
1

2
√

3
is labelled by C, and 4ABC is in bold red.

A B

C

x = 1
2
√
3

(√
3
2
, 0
)(

−
√
3
2
, 0
)

We know that AB =
√

3, AC =
√

2 and BC = 1. Suppose 0 ≤ a <
1

2
√

3
and consider the

cross section at x = a. Let E be the point on the x-axis at x = a, which implies that E
is on AB. As well, let D be the point at which the plane with equation x = a intersects
AC. The plane is perpendicular to the x-axis, which means that ∠AED = 90◦.

B

C

A E

D
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The length of AE is

√
3

2
+ a, and 4AED is similar to 4ACB since they share an angle

at A and ∠AED = ∠ACB = 90◦. Therefore,
AD

AE
=
AB

AC
=

√
3√
2

which gives

AD =

√
3√
2

(√
3

2
+ a

)
=

3

2
√

2
+

√
3a√
2

As well,
ED

AE
=
CB

AC
=

1√
2

and so

ED =
1√
2

(√
3

2
+ a

)
=

√
3

2
√

2
+

a√
2

Next, let G and H be the other two vertices of the cube that are on the same face as A
and C and let M and N be the points where the plane with equation x = a intersects GC
and HC, respectively.

A

C

D

G H

M N

The plane with equation x = − 1

2
√

3
contains both G and H and is parallel to the plane

with equation x = a. Since segments GH and MN are themselves in the same plane,
they must be parallel. It follows that 4CMN is an isosceles right-angled triangle. By an
argument used in part (b), it follows that MD = CD = ND. We have that AC =

√
2 and

AD =
3

2
√

2
+

√
3a√
2

, which means

MD = ND = CD = AC − AD =
√

2−

(
3

2
√

2
+

√
3a√
2

)
=

1

2
√

2
−
√

3a√
2

Now consider4EMN with D on MN . By the fact from earlier about hexagons, we already
know that EM = EN . We have just shown that MD = ND. Since they also share side
ED, we get that 4EDN and 4EDM are congruent by side-side-side congruence. Thus,
∠EDM = ∠EDN and their sum is 180◦, so 4EDN is right-angled at D. Therefore, the
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length of EN , which is f(a), can be computed using the Pythagorean theorem.

f(a) = EN =
√
ED2 +ND2

=

√√√√( √3

2
√

2
+

a√
2

)2

+

(
1

2
√

2
−
√

3a√
2

)2

=

√
3

8
+

√
3a

2
+
a2

2
+

1

8
−
√

3a

2
+

3a2

2

=

√
1

2
+ 2a2

We can now define f(x) on

[
0,

√
3

2

]
as a piecewise function:

f(x) =


√

1

2
+ 2x2 if 0 ≤ x <

1

2
√

3√
3√
2
−
√

2x if
1

2
√

3
≤ x ≤

√
3

2

To extend f to all of I, we observe that, like in part (b), f(x) = f(−x). Thus, we can

define f(x) on

[
−
√

3

2
, 0

]
by substituting x = −x. Note that since (−x)2 = x2, the function

definition is the same for − 1

2
√

3
< x ≤ 0 as it is for 0 ≤ x <

1

2
√

3
. Thus, we get that

f(x) =



√
3√
2

+
√

2x if −
√

3

2
≤ x ≤ − 1

2
√

3√
1

2
+ 2x2 if − 1

2
√

3
< x <

1

2
√

3√
3√
2
−
√

2x if
1

2
√

3
≤ x ≤

√
3

2

Below is a diagram of the region above the graph of y = −f(x) and below that of y = f(x).

x

y
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