
Problem of the Month
Problem 0: September 2020

Problem

A rectangular array extends up and to the right with infinitely many rows and infinitely many
columns. Integers are placed in the four “bottom-left” cells as shown with 4 in the bottom-left
corner, 2 in each of the cells sharing a side with the cell containing 4, and 1 in the cell immediately
to the right and above the 4.
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4 2

2 1

When referring to rows and columns, we start the enumeration from the bottom and the left. For
example, the “third row” refers to the third row from the bottom.

Integers are placed in the remaining cells recursively as follows:

• In the first and second rows, each remaining cell contains the sum of the integer in the cell
immediately to its left and twice the integer two cells to its left. For example, the third cell
in the first row contains the integer 2 + 2(4) = 10.

• Cells in or above the third row contain the sum of the integer in the cell immediately below
and twice the integer in the cell two below. For example, the second cell in the third row
contains the integer 1 + 2(2) = 5.

We will denote by f(m,n) the integer in the mth row and the nth column.

(a) Show that every cell other than those in the first two columns contains the sum of the integer
in the cell immediately to its left and twice the integer in the cell two to its left. That is,
show that f(m,n) = f(m,n− 1) + 2f(m,n− 2) for all integers m ≥ 1 and n ≥ 3.

(b) Prove that f(m,m) is a perfect square for every integer m ≥ 1. In other words, prove that
all of the cells on the diagonal contain perfect squares.

(c) Determine the value of f(456, 789).



Hint

Before doing any of the parts of this problem, it is a good idea to fill in some of the table in order
to gain some intuition. However, working out a few cases and convincing yourself something is
true is not the same as writing a formal proof.

(a) By carefully using the rules defining the numbers in the cells, an informal argument can be
given using a bit of algebra. However, to give a formal argument, it is highly recommended
to use mathematical induction. You may want to read about this before trying to write a
proof.

(b) Compute a few of the diagonal entries. Do you notice anything about what numbers were
squared to get these diagonal entries? Once again, mathematical induction will be useful in
formalizing any observations you make.

(c) Can you find a formula for the entries in the second row and second column?



Problem of the Month
Solution to Problem 0: September 2020

We will use the notation introduced in the problem statement and denote by f(m,n) the integer
in the cell in the mth row and the nth column. Using this notation, the example given in the first
bullet point in the problem statement translates to f(1, 3) = f(1, 2) + 2f(1, 1) = 2 + 2(4) = 10.

Before attempting any of these problems, it is a good idea to fill in a bit more of the array in
order to gain some intuition:

· · ·
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... · · ·

4 2 10 14 34

2 1 5 7 17

10 5 25 35 85

14 7 35 49 119

34 17 85 119 289

There are several observations you might make at this point. For example, 4, 1, 25, 49, and 289
are all perfect squares, so the claim in part (b) might seem plausible. You might also notice that
the array appears to be symmetric in the diagonal. That is, it seems f(m,n) = f(n,m) for all
positive integers m and n.

(a) Using our notation, the task is to show that

f(m,n) = f(m,n− 1) + 2f(m,n− 2) (1)

for every pair of positive integers (m,n) with n ≥ 3. For cells in the bottom two rows
(m = 1 or m = 2), the integers are defined in this way. That is, Equation (1) holds when
m = 1 and m = 2 by definition. Looking back at the partially-filled array above, you might
want to check that this identity holds for a few other cells. For example, f(4, 5) = 119,
f(4, 4) = 49, and f(4, 3) = 35 and indeed 119 = 49 + 2(35).

Now we note that we can use the fact that Equation (1) holds for cells in the first and
second row (for m = 1 and m = 2) to show that Equation (1) also holds for cells in
the third row (for m = 3). Consider the pair (3, n) for some n ≥ 3. We know that
f(3, n) = f(2, n)+2f(1, n) by the rule in the second bullet point in the problem statement.
Since Equation (1) holds for m = 1 and m = 2 we have f(2, n) = f(2, n− 1) + 2f(2, n− 2)
and f(1, n) = f(1, n− 1) + 2f(1, n− 2). Putting these together we get

f(3, n) = f(2, n) + 2f(1, n)

= [f(2, n− 1) + 2f(2, n− 2)] + 2[f(1, n− 1) + 2f(1, n− 2)]

= [f(2, n− 1) + 2f(1, n− 1)] + 2[f(2, n− 2) + 2f(1, n− 2)]

Notice that f(2, n−1)+2f(1, n−1) = f(3, n−1) and f(2, n−2)+2f(1, n−2) = f(3, n−2),



again by how the array is defined. This gives us that f(3, n) = f(3, n− 1) + 2f(3, n− 2)
which is Equation (1) for m = 3, and so the equation holds for the third row.

We could now proceed to argue that since Equation (1) holds for m = 1, m = 2 and m = 3
it must be the case that Equation (1) also holds for m = 4. You might find it useful to
try to write down this argument yourself. (The argument will be very similar to the one
presented above, and you should find that you only need to explicitly use the fact that
Equation (1) holds for m = 2 and m = 3 in your argument.) Instead we proceed more
generally to argue that if Equation (1) holds for m = 1, m = 2, and so on up to m = r
then Equation (1) must also hold for m = r + 1. The rough idea is to show that you can
always get “the next row”.

Suppose that r ≥ 2 is an integer and that Equation (1) holds for the cells in the first r
rows. That is, we assume Equation (1) holds for all n ≥ 3 when m = 1, and when m = 2,
and so on up to when m = r. This means we have the following:

Definition 1: Given a positive integer t, we have f(m, t) = f(m− 1, t) + 2f(m− 2, t) for
all m ≥ 3. (This is by the rule in the second bullet point in the problem statement.)

Assumption 1: Given a positive integer t ≤ r, we have f(t, n) = f(t, n−1) + 2f(t, n−2)
for all n ≥ 3. (This is our assumption from above.) In particular, we are assuming that
f(r, n) = f(r, n− 1) + 2f(r, n− 2) and f(r − 1, n) = f(r − 1, n− 1) + 2f(r − 1, n− 2).

We will show that the above statements imply that the identity also holds for the cells in
the (r + 1)st row. Consider a cell in the (r + 1)st row that is not in the first two columns.
That is, consider the pair (r + 1, n) for some n ≥ 3. We wish to show that Equation (1)
holds for this pair, that is, f(r + 1, n) = f(r + 1, n − 1) + 2f(r + 1, n − 2). Here is the
calculation, using the assumptions above:

f(r + 1, n) = f(r, n) + 2f(r − 1, n) (by Definition 1)

=
[
f(r, n− 1) + 2f(r, n− 2)

]
+ 2

[
f(r − 1, n− 1) + 2f(r − 1, n− 2)

]
(by Assumption 1)

= f(r, n− 1) + 2f(r − 1, n− 1) + 2f(r, n− 2) + 4f(r − 1, n− 2)

=
[
f(r, n− 1) + 2f(r − 1, n− 1)

]
+ 2

[
f(r, n− 2) + 2f(r − 1, n− 2)

]
= f(r + 1, n− 1) + 2f(r + 1, n− 2) (by Definition 1)

We have shown that if the identity holds in the first r rows, then it holds in the first r + 1
rows. Since it holds in the first two rows, it holds in the first three rows. Since it holds in
first three rows, it holds in the first four rows. This continues indefinitely to imply that
the identity holds in every row. We have just used what is known as strong induction.

(b) You may have noticed that the entries in the second row are identical to those in the second
column. This is true because the second row and the second column start with the same
two integers (2 followed by 1), and all subsequent integers in each are determined in the
same way (where each integer depends on the two integers before it). With our notation,
this means that for every positive integer n we have f(n, 2) = f(2, n).

Something more subtle that you may have noticed is that for all positive integers m and
n, we have f(m,n) = f(m, 2)f(2, n). You may want to go back to the array and check
this for a few pairs (m,n). Using this, and the fact above that f(n, 2) = f(2, n) for every
n ≥ 1, we get that

f(n, n) = f(n, 2)f(2, n) = f(2, n)2



which establishes that f(n, n) is a perfect square for every n ≥ 1. In fact, it establishes
that the integers on the diagonal are the squares of the integers in the second row (or
second column).

We will finish the solution to part (b) with a somewhat informal explanation of why
f(m,n) = f(m, 2)f(2, n) for all positive integers m and n. This fact will also be used in
the solution to part (c). A formal proof of this fact can be found after the solution to
part (c).

The main observation is that each row is a “scalar multiple” of the second row. To see
this, we argue as follows: Suppose two sequences a1, a2, a3, . . . and b1, b2, b3, . . . satisfy
an = an−1 + 2an−2 and bn = bn−1 + 2bn−2 for n ≥ 3. This means each sequence is entirely
determined by its first two terms. Also, both sequences satisfy the same recursive rule.

Now suppose there is some constant c so that b1 = ca1 and b2 = ca2, that is, a1 and a2 can
be scaled by the same factor to get b1 and b2, respectively. Then

b3 = b2 + 2b1 = ca2 + 2ca1 = c(a2 + 2a1) = ca3,

which says that b3 can be obtained by scaling a3 by the same factor. Continuing, we also
have

b4 = b3 + 2b2 = ca3 + 2ca2 = c(a3 + 2a2) = ca4.

This reasoning can be continued to show that bn = can for every positive integer n. The
reason this happens is because the way in which subsequent terms rely on previous terms
is linear (a slightly different use of the word than you may be used to). Roughly speaking,
linear in this context means the terms in the sequence are obtained by scaling some of the
previous terms and adding the results together.

Now note that the first two columns in the array contain sequences of integers with the
above properties where bn corresponds to the first column, an corresponds to the second
column, and the constant is c = 2. Using the reasoning above, we can deduce that
the integers in the first column are each exactly twice the integer to their right (in the
second column). Now consider the second row and the mth row. We know that the first
two terms in the second row are 2 and 1, in that order, and the first two terms in the
mth row must be 2f(m, 2) and f(m, 2), in that order. In part (a), we showed that the
sequence in the mth row satisfies the same recursive definition as the one in the second
row. This means that the mth row and second row contain sequences of integers with
the above properties with c = f(m, 2). It follows that the integers in the mth row must
all be c times their corresponding integer in the second row. In other words, we have
f(m,n) = cf(2, n) = f(m, 2)f(2, n).

(c) Using the identity f(m,n) = f(m, 2)f(2, n) = f(2,m)f(2, n), we get

f(456, 789) = f(456, 2)f(2, 789) = f(2, 456)f(2, 789)

so we can find f(456, 789) by finding f(2, 456) and f(2, 789) and taking their product.

Since the rest of the solution will focus on the entries in the second row, we will simplify
notation and define g(n) to be f(2, n) for each integer n ≥ 1. From the table at the
beginning of the solution, we get g(1) = 2, g(2) = 1, g(3) = 5, g(4) = 7, g(5) = 17.
Continuing to compute terms, it can be checked that g(6) = 31, g(7) = 65, g(8) = 127,
g(9) = 257, and g(10) = 511.



While the pattern may have been difficult to detect before, it may be easier to guess from
the sequence

2, 1, 5, 7, 17, 31, 65, 127, 257, 511

as these numbers are all 1 away from a power of 2. In fact, 2 is 1 more than 20, 1 is 1 less
than 21, 5 is 1 more than 22, 7 is 1 less than 23, and so on. Following this reasoning, we
can see that when 1 ≤ n ≤ 10, we have that

g(n) = 2n−1 + (−1)n−1.

Proceeding once more by strong induction, we can prove that this identity holds for all
n ≥ 1. Assume for some r ≥ 2 that g(k) = 2k−1 +(−1)k−1 for every k from 1 to r inclusive.
In particular, this implies g(r) = 2r−1 + (−1)r−1 and g(r − 1) = 2r−2 + (−1)r−2. We will
call these equations Equation (2) and Equation (3) respectively. By the definition of
the integers in the second row, we have g(r + 1) = g(r) + 2g(r − 1) which we will refer to
as Equation (4). Then we have

g(r + 1) = g(r) + 2g(r − 1) (Equation (4))

=
(
2r−1 + (−1)r−1

)
+ 2

(
2r−2 + (−1)r−2

)
(Equations (2) and (3))

= 2r−1 + (−1)r−1 + 2r−1 + 2(−1)r−2

= 2r−1 + 2r−1 + (−1)r−1 + 2(−1)r−2

= 2
(
2r−1

)
+ (−1)r−2 (−1 + 2)

= 2r + (−1)r−2(1)

= 2r + (−1)r−2(−1)2

= 2r + (−1)r

where the calculation after the second two equations is just arithmetic using exponent
laws. This means g(r + 1) = 2(r+1)−1 + (−1)(r+1)−1, so by strong induction, we have that
g(n) = f(2, n) = 2n−1 + (−1)n−1 for all n ≥ 1. Using the calculation from above, we get

f(456, 789) = f(2, 456)f(2, 789)

=
(
2455 + (−1)455

) (
2788 + (−1)788

)
=

(
2455 − 1

) (
2788 + 1

)
= 21243 − 2788 + 2455 − 1.

Proof that f(m,n) = f(m, 2)f(2, n) for all positive integers m and n.

This proof is by strong induction and features calculations very similar to those in the solution
to part (a). For notational convenience, we will refer to the equation f(m,n) = f(m, 2)f(2, n)
as Equation (2).

Since f(2, 2) = 1, we have that f(2, n) = f(2, 2)f(2, n) and f(m, 2) = f(m, 2)f(2, 2), which
verifies Equation (2) in the case that m = 2 or n = 2. To see that Equation (2) holds when
m = 1 for all n, first observe that f(1, 1) = 2f(2, 1) and f(1, 2) = 2f(2, 2). Now assume for some
integer r ≥ 2 that f(1, n) = 2f(2, n) for n = 1, n = 2, and so on up to n = r. In particular, we



assume f(1, r) = 2f(2, r) and f(1, r − 1) = 2f(2, r − 1). Then

f(1, r + 1) = f(1, r) + 2f(1, r − 1)

= 2f(2, r) + 2 (2f(2, r − 1))

= 2 (f(2, r) + 2f(2, r − 1))

= 2f(2, r + 1)

so f(1, r + 1) = 2f(2, r + 1) as well. By strong induction, it follows that f(1, n) = 2f(2, n) for
all n ≥ 1. Noting that f(1, 2) = 2, this means f(1, n) = f(1, 2)f(2, n), so Equation (2) holds for
all n when m = 1.

We will now use induction again to continue to show row-by-row that Equation (2) holds for
all positive integers m and n. We know that it is true for all n when m = 1 and when m = 2.
Suppose that r ≥ 2 is an integer and that Equation (2) holds in the first r rows. In particular,
we are assuming f(r, n) = f(r, 2)f(2, n) and f(r − 1, n) = f(r − 1, 2)f(2, n) for all n ≥ 1. For
any n ≥ 1, we have

f(r + 1, n) = f(r, n) + 2f(r − 1, n)

= (f(r, 2)f(2, n)) + 2 (f(r − 1, 2)f(2, n))

= (f(r, 2) + 2f(r − 1, 2)) f(2, n)

= f(r + 1, 2)f(2, n)

where the first and last equalities are by the definition of the entries in the (r + 1)st row. By
strong induction, it follows that f(m,n) = f(m, 2)f(2, n) for all positive integers m and n.

Can you see how to use the fact that f(n, 2) = f(2, n) for all positive integers n to prove that
f(m,n) = f(n,m) for all positive integers m and n?



Problem of the Month
Problem 1: October 2020

Problem

(a) Let θ be an angle with 0 < θ < 45◦. In the diagram, points A and B are configured so that
∠AOB = 2θ and 4AOB is isosceles with AO = BO.

B

A

O

A circle is inscribed in 4AOB and another circle is drawn so that it is tangent to the larger
circle as well as OA and OB. In terms of θ, find the ratio of the radius of the larger circle
to the radius of the smaller circle.

(b) Similar to part (a), an equilateral triangle has a circle inscribed in it. Three circles are then
drawn, each tangent to two of the sides of the triangle as well as the larger circle. Another
three circles are then drawn, each tangent to two of the three sides of the triangle as well as
one of the circles drawn in the previous step.

··

··

··

If this process is continued indefinitely, what fraction of the area of the triangle is covered
by circles?



(c) Suppose 4AOB and θ are as they were defined in part (a). The process of drawing a circle
tangent to OA, OB, and the smallest circle is repeated forever. What fraction of the area of
4AOB is covered by circles? Your answer should be in terms of θ.

B

A

O
· · ·

The result of part (c) can be applied to solve part (b). Can you see how?



Hint

(a) There are plenty of ways to approach this problem. One useful construction is to connect
the centres of the circles to each other, then draw a perpendicular from each centre to the
line OB.

(b) It is possible to apply part (a) with θ = 30◦. While there are other ways to do this part, the
easiest probably involves finding the sum of an infinite geometric series. You may want to
look up how this is done.

(c) In some sense, this is a more general version of part (b). Finding the sum of a geometric
series will be useful again here, but the terms of the series will be in terms of the variable θ.
You might also find it useful to express the area of the triangle and the area of the largest
circle in ways that are easy to compare.



Problem of the Month
Solution to Problem 1: October 2020

(a) Solution 1: Let P and Q be the centres of the smaller and larger circles, respectively, and
let C and D be the points of tangency of the smaller and larger circles to OB. Similarly,
let E and F be the points of tangency of the smaller and larger circles to OA.

B

A

O

P

Q

C D

E

F

Line segments PC and PE are radii of the smaller circle and thus are equal. Line segments
OE and OC are equal because the distances from two points of tangency to the point where
the tangents intersect are equal. We also have that ∠OEP = ∠OCP = 90◦ because a
radius drawn to a point of tangency is perpendicular to that tangent. Therefore, 4OCP
is congruent to 4OEP by side-angle-side congruence. This means ∠EOP = ∠COP , so
OP is the angle bisector of ∠EOC = ∠AOB. By a similar argument, OQ is the angle
bisector of ∠FOD = ∠AOB. This tells us that P and Q both lie on the angle bisector of

∠AOB. Therefore, OPQ is a line segment, and ∠POC =
2θ

2
= θ.

Let R be the radius of the larger circle and let r be the radius of the smaller circle. It
follows from the fact that a radius is perpendicular to the corresponding tangent that
line segment PQ passes through the point where the two circles are tangent. This means

PQ = r + R. Also, since
PC

OP
= sin θ and PC = r, we get OP =

r

sin θ
. Therefore,

OQ =
r

sin θ
+ r + R (sin θ 6= 0 because 0◦ < θ < 45◦). We also know sin θ =

QD

OQ
and

QD = R, so

R

OQ
= sin θ =

R
r

sin θ
+ r +R

Multiplying through by the denominator of the expression on the right gives

R = sin θ
( r

sin θ
+ r +R

)
= r + r sin θ +R sin θ.

Bringing all terms with an R to one side and factoring, we get

R(1− sin θ) = r(1 + sin θ)



and so now we can solve for
R

r
to get

R

r
=

1 + sin θ

1− sin θ
.

This expression is defined because 0 < θ < 45◦, so sin θ 6= 1.

Solution 2: Let P and Q be the centres of the smaller and larger circles, respectively,
and let C and D be the points of tangency of the smaller and larger circles to OB. Let G
be the point on QD so that PG is perpendicular to QD.

B

A

O

P

Q

C D

G

As mentioned in the first solution, ∠PCD and ∠QDC are both right angles and PQ passes
through the point at which the two circles are tangent. As well, O, P , and Q lie on the
angle bisector of ∠AOB.

This means PG is parallel to OD so ∠QPG = ∠QOD. We also have ∠QGP = ∠QDO =
90◦, so 4PQG is similar to 4OQD. Therefore, since Q lies on the angle bisector of

∠AOB, we have
QG

PQ
=
QD

OQ
= sin θ.

Let R be the radius of the larger circle and r be the radius of the smaller circle. Since
quadrilateral PGDC has three right angles, it is a rectangle, which means GD = PC = r.
Thus, QG = R− r. We also have that PQ = R + r, so

sin θ =
R− r
R + r

.

This can be rearranged to get R sin θ + r sin θ = R − r or R(1− sin θ) = r(1 + sin θ), and
therefore

R

r
=

1 + sin θ

1− sin θ
.

(b) We will label the triangle 4OAB. Let P be the centre of the largest circle in the bottom-
left corner and Q be the centre of the largest circle. Let the circles with centres P and
Q be tangent at T , and suppose the common tangent intersects OA at S and OB at R.
Finally, let D be the point at which the circle centred at Q is tangent to OB.



··

··

··
B

A

O D

P

Q

R

S

T

By the reasoning in part (a), points O, P , and Q all lie on the angle bisector of ∠AOB, so
∠SOT = ∠ROT . We also have, by circle properties, that ∠STO = ∠RTO = 90◦, which
means 4STO is congruent to 4RTO by angle-side-angle congruence (these two triangles
share side OT ). It follows that ∠OST = ∠ORT and since ∠SOR = 60◦, we get that
4SOR is equilateral. [Note: If we only assume that 4AOB is isosceles, this argument
still shows that 4SOR is similar to 4AOB.]

Suppose the side lengths of 4AOB are equal to x.

Since OQ is the angle bisector of ∠AOB, we have that ∠QOD =
60◦

2
= 30◦. Since OB is

tangent to the largest circle at point D, we have that ∠ODQ = 90◦. Therefore, 4ODQ
is a 30◦-60◦-90◦ triangle which implies

QD

OD
=

1√
3

. Since 4AOB is equilateral, D is the

midpoint of OB. [The proof of this is left as an exercise. One way to show it is to connect Q

to B and show that 4QOD is congruent to 4QBD.] This means OD =
x

2
so QD =

x

2
√

3
.

We have found the radius of the largest circle in terms of the side length of the triangle.

By part (a) with θ = 30◦, the ratio of the radius of the circle centred at Q to the radius of
the circle centred at P is

1 + sin 30◦

1− sin 30◦
=

1 + 1
2

1− 1
2

= 3.

This means the radius of the circle centred at P is
1

3
× QD =

x

6
√

3
. By symmetry, the

other two circles tangent to the largest circle have this same radius.

We showed earlier that 4SOR is equilateral. This means we can apply the argument

above again to get that the radii of the three next largest circles are each
1

3
× x

6
√

3
. We

could then draw the common tangent to the circle centred at P and the next largest circle
to repeat the argument. The radius will be multiplied by 1

3
each time.



Therefore, the total area of the circles is represented by the following infinite series:

π

(
x

2
√

3

)2

+ 3π

(
x

6
√

3

)2

+ 3π

(
x

18
√

3

)2

+ · · · .

The first term in the sum is equal to the area of the largest circle. The second term is
equal to the total area of the three next largest circles (those tangent to the largest circle).
The third term is equal to the total area of the three next largest circles, and so on.

After some simplification, the sum above is equivalent to

πx2

12
+

3πx2

12

(
1

9
+

1

92
+

1

93
+ · · ·

)
.

If a and r are real numbers with −1 < r < 1, then we can find the sum of the geometric

series a+ ar+ ar2 + · · · using the formula a+ ar+ ar2 + · · · = a

1− r
. Our expressions for

the total area of the circles involves a geometric series with a = r =
1

9
, so

1

9
+

1

92
+

1

93
+ · · · =

1
9

1− 1
9

=
1

8
.

Therefore, the total area of the circles is

πx2

12
+

3πx2

12
× 1

8
=

8πx2 + 3πx2

96

=
11πx2

96
.

There are several ways to determine the area of 4AOB in terms of its side length, x. One
way is to use that the area of a triangle with side lengths a and b meeting at angle α is
1

2
ab sinα. Thus, 4AOB has area

1

2
x2 sin 60◦ =

√
3x2

4
since each of its angles measures

60◦ and its sides all have length x. The fraction of the triangle that is covered by circles is

11πx2

96√
3x2

4

=
11π

24
√

3
.

(c) This calculation will be rather similar to the one in part (b). Suppose the radius of the

larger circle is R and set α =
1− sin θ

1 + sin θ
. From part (a), we have that

r

R
= α, or r = αR.

Following the reasoning in the solution to part (b), we can show that the total area of the
circles is given by

πR2 + π(αR)2 + π(α2R)2 + π(α3R)2 + · · · .
Factoring out πR2, this is equal to

πR2(1 + α2 + α4 + α6 + · · · ).

Since 0◦ < θ < 45◦, we have that 0 < sin θ < 1 (in fact, sin θ <
√
2
2

, but having sin θ < 1 is
good enough for what follows). This means 0 < 1− sin θ < 1. Furthermore, since sin θ is
positive, we have 1− sin θ < 1 + sin θ. It follows that

0 <
1− sin θ

1 + sin θ
< 1



or 0 < α < 1 and so 0 < α2 < 1. Therefore, using the formula for the sum of a geometric
series (see part (b)), the total area of the circles is

πR2(1 + α2 + α4 + α6 + · · · ) =
πR2

1− α2
.

Substituting the expression for α, we have that the total area of the circles is

πR2

1− α2
=

πR2

1−
(
1−sin θ
1+sin θ

)2
=

πR2(1 + sin θ)2

(1 + sin θ)2 − (1− sin θ)2

=
πR2(1 + sin θ)2

4 sin θ
.

We will return to the expression above later, but first we will find the area of 4AOB in
terms of R and θ in order to compute the ratio.

Let D, F , and V be the points of tangency of the largest circle to the three sides of 4OAB
as shown below. Connect the centre of the circle, Q, to O, A, B, D, F , and V . The rest
of this page is devoted to proving that OQV is a line. You may wish to skip this part of
the argument and come back to it later.

B

A

O

Q

D

F

V

Similar to an observation in part (a), we have that OF = OD because they are equal
tangents. Also, QF = QD = R and 4OQF and 4OQD have common side OQ. By
side-side-side congruence, 4OQF is congruent to 4OQD. This means ∠OQF = ∠OQD.

By similar arguments, ∠BQV = ∠BQD and ∠AQV = ∠AQF .

It is given that OA = OB, and since OF = OD, we have

FA = OA−OF = OB −OD = DB.

Again, QF = QD = R and ∠AFQ = ∠BDQ = 90◦ because they are each made by a
tangent and a radius, so we have that 4AFQ is congruent to 4BDQ by side-angle-side
congruence. This means ∠BQD = ∠AQF .



Using that ∠OQF = ∠OQD and that ∠BQV = ∠BQD = ∠AQF = ∠AQV , we get

360◦ = ∠OQD + ∠BQD + ∠BQV + ∠AQV + ∠AQF + ∠OQF

= ∠OQD + ∠BQD + ∠BQV + ∠BQV + ∠BQD + ∠OQD

= 2(∠OQD + ∠BQD + ∠BQV )

= 2∠OQV

This means ∠OQV = 180◦, so OQV is a line segment.

By right-angle trigonometry and since the point Q lies on the angle bisector of ∠AOB,

sin θ =
DQ

OQ
=

R

OQ
, so OQ =

R

sin θ
. Since QV = R as well, we have that

OV = R +
R

sin θ
.

We also have that tan θ =
BV

OV
, which means

BV = OV tan θ =

(
R +

R

sin θ

)
tan θ.

Since V is on the angle bisector of ∠AOB, we have ∠AOV = ∠BOV , so 4AOV is
congruent to 4BOV by side-angle-side congruence, so AV = BV , which means AB =
2BV . Therefore, the area of 4OAB is

1

2
× AB ×OV =

1

2
× 2

(
R +

R

sin θ

)
tan θ

(
R +

R

sin θ

)
= R2 tan θ

(
1 +

1

sin θ

)2

Recall that the total area of the circles is

πR2(1 + sin θ)2

4 sin θ
,

so the fraction of the triangle covered by circles is

πR2(1+sin θ)2

4 sin θ

R2 tan θ
(
1 + 1

sin θ

)2 =
π(1 + sin θ)2

4 sin θ tan θ
(
1 + 1

sin θ

)2
=

π(1 + sin θ)2

4 sin2 θ
cos θ

(
1 + 1

sin θ

)2
=

π cos θ(1 + sin θ)2

4
[
sin θ

(
1 + 1

sin θ

)]2
=
π cos θ(1 + sin θ)2

4(1 + sin θ)2

=
π

4
cos θ.

As mentioned in the statement of the problem, this result can be used to produce the
answer from part (b). We show how to do this now, noting that this isn’t necessarily a
better way to solve part (b).



Suppose the side length of the equilateral triangle is x. We computed in part (b) that the

area of the triangle is

√
3x2

4
. As well, the area of the largest circle is

πx2

12
.

In part (b), there are three infinite “lines” of circles, each starting with the largest circle and
extending toward a vertex of the triangle. By part (c), each of these three lines of circles

covers the fraction
π

4
cos θ of the area of the triangle, where θ =

60◦

2
= 30◦. Therefore, the

area of each of the three infinite lines of circles is

π

4
cos 30◦ ×

√
3x2

4
=
π

4
×
√

3

2
×
√

3x2

4

=
3πx2

32
.

If we take three times this quantity, we will have computed the total area of all circles in
the picture from part (b) but will have counted the area of the largest circle three times
rather than once. Therefore, the total area of the circles is

3× 3πx2

32
− 2× πx2

12
= πx2

(
9

32
− 1

6

)
= πx2

(
27

96
− 16

96

)
=

11πx2

96
.

Therefore, the fraction of the triangle covered by circles is

11πx2

96√
3x2

4

=
11π

24
√

3

which is indeed the answer from part (b).



Problem of the Month
Problem 2: November 2020

Problem

Suppose n is a positive integer and that you have n pairs of socks. Within each pair of socks, the
two socks are the same colour. Every pair has a unique colour. After doing laundry, all of the 2n
socks are in a laundry basket. You begin to remove socks one at a time (always choosing randomly
and never replacing the socks) until you find a pair. That is, you remove socks until you remove
a sock that matches a sock that has already been removed.

For positive integers n and k with k < 2n, we define P (n, k) to be the probability that the first
k socks removed are all different colours and there is a pair among the first k + 1 socks that are
removed. That is, P (n, k) is the probability that the first pair is found upon removing the (k+1)st

sock.

(a) Compute P (4, k) for each k from 1 through 7. Some of these probabilities should equal 0.

(b) Find a general formula for P (n, k) when k ≤ n. It might be useful later if you can find a
formula that only uses addition, subtraction, multiplication, division, exponentiation, as well
as factorials and binomial coefficients. Notice that the question does not ask about P (n, k)
for k > n. You might want to think about what happens in this case.

(c) For a positive integer i, define Ti to be the sum of the first i positive integers. For example,
T1 = 1, T2 = 1 + 2 = 3, and T3 = 1 + 2 + 3 = 6. The numbers T1, T2, T3, T4, and so on,

are often called the triangular numbers. You may already know that Ti =
i(i + 1)

2
for every

positive integer i. If not, think about why!

(i) Suppose n = Ti for some i > 1. Show that the largest value of P (n, k) is achieved when
k = i and when k = i + 1.

(ii) Suppose n is a positive integer that is not a triangular number. This means n is strictly
between Ti and Ti+1 for some i. Show that the largest value of P (n, k) is achieved when

k =

⌊
1 +
√

8n + 1

2

⌋
.

(d) For a positive integer n, we call k a peak for n if P (n, k) ≥ P (n, `) for all integers 1 ≤ ` ≤ n.
Part (c) suggests that there are two peaks for n when n > 1 is a triangular number and that
there is a unique peak when n is not a triangular number. Find a positive integer k for which
there are exactly 2020 positive integers n with the property that k is a peak for n.



Hint

(a) It might be helpful to write out in words what P (4, 1), P (4, 2), P (4, 3), and so on, actually
mean.

(b) There are many ways to approach this. It might be useful to calculate P (n, 1), P (n, 2),
P (n, 3), and so on, for some specific values of n (in (a), this was done for n = 4). To tidy up
your expression, it might also be useful to read about factorials and binomial coefficients.

(c) Using your formula from (b), consider the quantity
P (n, k + 1)

P (n, k)
.

(d) Use part (c) and look for a pattern.



Problem of the Month
Solution to Problem 2: November 2020

(a) The quantity P (4, 1) is the probability that there is no pair among the first sock removed
and there is a pair among the first two socks removed. There can never be a pair among
one sock, so P (4, 1) is simply the probability that the second sock matches the first. After
drawing one sock, there will be seven socks remaining and exactly one of them matches

the first. Therefore, P (4, 1) =
1

7
.

The quantity P (4, 2) is the probability that the first two socks are different and the third
sock matches one of the first two. The probability that the first two socks are different is

the probability that the second sock does not match the first sock, which is
6

7
. If the first

two socks drawn are different, then there will be six socks remaining, two of which match

one of the first two. Therefore, P (4, 2) =
6

7
× 2

6
=

2

7
.

In a similar way, we compute P (4, 3) by first computing the probability that the first three
socks are different. This is the probability that the first two socks are different times the
probability that the third sock is different from both of the first two. From before, the

probability that the first two socks are different is
6

7
. Since two socks of the remaining six

would match at least one of the first two (different) socks, the probability that the first

three socks are different is
6

7
× 4

6
=

4

7
. After three distinct socks are drawn, there are five

remaining, and three of them will make a pair. Therefore, P (4, 3) =
4

7
× 3

5
=

12

35
.

Suppose the first four socks that were removed are all different. Then the fifth sock must
match one of these first four since there are only four pairs in total. Therefore, P (4, 4) is
equal to the probability that the first four socks are different. Following similar reasoning
to that in the previous few cases,

P (4, 4) =
6

7
× 4

6
× 2

5
=

8

35
.

Among any five of the eight socks, there must be a pair since there are only four pairs
overall. Therefore, the probability that the first five, six, or seven socks are all different
is equal to zero, which means P (4, 5) = P (4, 6) = P (4, 7) = 0. Note that this reasoning
generalizes. That is, P (n, k) = 0 when n < k < 2n.

Since a pair must eventually be found, the sum of the probabilities P (4, 1) through P (4, 7)
should be 1. Indeed,

P (4, 1) + P (4, 2) + P (4, 3) + P (4, 4) + P (4, 5) + P (4, 6) + P (4, 7)

=
1

7
+

2

7
+

12

35
+

8

35
+ 0 + 0 + 0

=
5 + 10 + 12 + 8

35

=
35

35
= 1



(b) We will give two derivations of the same formula using two different kinds of reasoning.

Using similar reasoning to that in the solution to part (a), we first compute the probability
that the first k ≤ n socks removed from a basket of 2n socks are all different. The

probability that the first two socks are different is
2n− 2

2n− 1
because after the first sock is

removed, there are 2n − 1 socks remaining in the basket, one of which matches the first
sock, so the other 2n− 2 do not match the first sock.

After two different socks are removed, there are 2n− 2 socks remaining in the basket, two
of which will match one of the first two socks. Therefore, (2n − 2) − 2 = 2n − 4 of the
remaining socks will not match either of the first two socks. This means the probability
that the first three socks are different is

2n− 2

2n− 1
× 2n− 4

2n− 2
.

After three distinct socks are removed, there are 2n − 3 socks remaining, three of which
will make a pair. Hence, (2n − 3) − 3 = 2n − 6 socks can be drawn so that the first four
socks are different. Therefore, the probability that the first four socks are different is

2n− 2

2n− 1
× 2n− 4

2n− 2
× 2n− 6

2n− 3
.

Continuing in this way, the probability that the first k socks are different is

2n− 2

2n− 1
× 2n− 4

2n− 2
× 2n− 6

2n− 3
× · · · × 2n− 2(k − 2)

2n− (k − 2)
× 2n− 2(k − 1)

2n− (k − 1)

=
(2n− 2)(2n− 4)(2n− 6) · · · (2n− 2(k − 2))(2n− 2(k − 1))

(2n− 1)(2n− 2)(2n− 3) · · · (2n− (k − 2))(2n− (k − 1))

and after factoring a 2 out of each term in the numerator, this is equal to

2k−1(n− 1)(n− 2)(n− 3) · · · (n− k + 2)(n− k + 1)

(2n− 1)(2n− 2)(2n− 3) · · · (2n− k + 2)(2n− k + 1)
.

It may not be obvious how to interpret the formula above when k = 1, or even when
k = 2. You may want to think about this now, but some explanation is given after the
simplification that follows. In order to tidy up this expression, we will multiply by 1 in

the forms
(n− k)!

(n− k)!
,

(2n− k)!

(2n− k)!
, and

2n

2n
. This will allow us to “complete” some factorials:

2k−1(n− 1)(n− 2)(n− 3) · · · (n− k + 2)(n− k + 1)

(2n− 1)(2n− 2)(2n− 3) · · · (2n− k + 2)(2n− k + 1)

=
2k−1(n− 1)(n− 2)(n− 3) · · · (n− k + 2)(n− k + 1)

(2n− 1)(2n− 2)(2n− 3) · · · (2n− k + 2)(2n− k + 1)
× (n− k)!

(n− k)!
× (2n− k)!

(2n− k)!
× 2n

2n

=
2kn!(2n− k)!

(2n)!(n− k)!
.

Before moving on, note that when k = 1, the expression above simplifies to

21n!(2n− 1)!

(2n)!(n− 1)!
=

2n(2n− 1)!

(2n)!
=

(2n)!

(2n)!
= 1



and when k = 2 it simplifies to

22n!(2n− 2)!

(2n)!(n− 2)!
=

4(n)(n− 1)

2n(2n− 1)
=

2n− 2

2n− 1
.

For k = 2, this agrees with the probability computed earlier. For k = 1, there can never
be a pair among one sock, so the probability that there is no pair among the first sock
should indeed be 1.

After the first k different socks are drawn, there are 2n− k socks remaining and k of them
can be drawn to make a pair with one of the first k. Therefore, we have

P (n, k) =
2kn!(2n− k)!

(2n)!(n− k)!
× k

2n− k
=

k2kn!(2n− k − 1)!

(2n)!(n− k)!
.

In the derivation above, we directly computed the probability that the first pair was found
when the (k+1)th sock was drawn. In the second derivation, the approach will be to count
the total number of ways in which all 2n socks can be drawn (without stopping at a pair),
then count the number of ways in which all 2n socks can be drawn so that the first pair
occurs when the (k + 1)th sock is drawn. The probability P (n, k) is the ratio of the result
of these two counts.

The second derivation of the formula assumes an understanding of binomial coefficients.

For the total number of ways to draw the socks, first observe that there are (2n)! ways to
order the 2n socks. Since the two socks in each pair are indistinguishable, this over counts
by a factor of 2 for each of the n pairs. Therefore, the number of ways to draw the 2n

socks is
(2n)!

2n
.

We now count the number of ways that the socks can be drawn so that the first pair occurs
when the (k + 1)st sock is drawn. There are n choices for the colour of the first pair, and
k choices for where the first of these socks was drawn (the second sock in this pair is the
(k + 1)st sock drawn). The other k − 1 socks drawn among the first k must be different
from eachother and different from the first pair. Thus, there are

(
n−1
k−1

)
possible choices for

the colours of the other k−1 socks, and (k−1)! orders in which they can be drawn. Thus,
if the first pair is made when the (k + 1)st sock is drawn, then there are

n× k ×
(
n− 1

k − 1

)
× (k − 1)!

ways in which the first k + 1 socks can be drawn.

Of the remaining 2n−k−1 socks to be drawn, there are n−k pairs. Similar to the earlier

count, this means there are
(2n− k − 1)!

2n−k
ways to draw the remaining socks. Therefore,

there are

n× k ×
(
n− 1

k − 1

)
× (k − 1)!× (2n− k − 1)!

2n−k
=

nk(n− 1)!(k − 1)!(2n− k − 1)!

(k − 1)!(n− k)!2n−k

=
k2k−nn!(2n− k − 1)!

(n− k)!

ways to draw the 2n socks so that the first pair occurs when the (k + 1)th sock is drawn.

Dividing this by
(2n)!

2n
and simplifying, we have

P (n, k) =
k2kn!(2n− k − 1)!

(2n)!(n− k)!
.



(c) Before solving either (i) or (ii), we will analyze the quantity
P (n, k + 1)

P (n, k)
, being careful to

assume that k ≤ n so that the denominator is not 0. Also note that in both parts we have

that n > T1 = 1. Notice that for any integer m > 1, we have that
m!

(m− 1)!
= m and

(m− 1)!

m!
=

1

m
. Using the formula from (b) for P (n, k + 1) and P (n, k), we have that

P (n, k + 1)

P (n, k)
=

(k + 1)2k+1n!(2n− k − 2)!

(2n)!(n− k − 1)!
× (2n)!(n− k)!

k2kn!(2n− k − 1)!

=
2(k + 1)

k
× n− k

2n− k − 1

Since we are interested in comparing the sizes of P (n, k + 1) and P (n, k), it will be useful
to determine when their ratio is greater than, less than, or equal to 1. To do this, we will
expand the numerator and denominator and rearrange the ratio to take the form 1 + x
and examine when the quantity x is greater than, less than, or equal to 0.

P (n, k + 1)

P (n, k)
=

2kn− 2k2 + 2n− 2k

2kn− k2 − k

=
2kn− k2 − k + (2n− k2 − k)

2kn− k2 − k

=
2kn− k2 − k

2kn− k2 − k
+

2n− k2 − k

2kn− k2 − k

= 1 +
2n− k2 − k

2kn− k2 − k
.

Recall that 1 ≤ k ≤ n, and since n > 1, we have that k + 1 < 2n, so 2n− k − 1 > 0 and
hence 2nk − k2 − k > 0. This means the denominator in the above expression is positive,

so the sign of
2n− k2 − k

2kn− k2 − k
(and whether or not it is 0) is completely determined by its

numerator. Three pieces of information can now be extracted from the expression above,
still subject to the restrictions n > 1 and 1 ≤ k ≤ n:

• P (n, k + 1) < P (n, k) if and only if 2n− k2 − k < 0.

• P (n, k + 1) > P (n, k) if and only if 2n− k2 − k > 0.

• P (n, k + 1) = P (n, k) if and only if 2n− k2 − k = 0.

Notice that the equation 2n − k2 − k = 0 is equivalent to n =
k(k + 1)

2
, which means

P (n, k + 1) = P (n, k) if and only if n is the kth triangular number. Finally, we examine
what happens when k = n. In this situation, 2n − k2 − k = 0 is the same as n − n2 = 0
which implies n = 0 or n = 1. Similarly, the inequality 2n − k2 − k > 0 is the same as
n − n2 > 0, which means n is strictly between 0 and 1. We are assuming that n > 1, so
neither of these situations can occur. Therefore, if k = n, we must have 2n − k2 − k < 0
which makes sense since P (n, n + 1) = 0 but P (n, n) > 0.

(i) Suppose n = Ti =
i(i + 1)

2
, the ith triangular number. From above, we have that

P (n, i) = P (n, i+ 1). Furthermore, since the list T1, T2, T3, . . . of triangular numbers
is increasing (each is obtained from the previous by adding a positive number), there
is no positive integer j 6= i for which n = Tj as well. Therefore, P (n, k + 1) = P (n, k)
if and only if k = i.



Notice that the quantity 2n− k2− k is decreasing as k increases. This means it must
be positive until k = i, at which point it equals 0, and after which it must be negative.
Using the earlier discussion, this means the list

P (n, 1), P (n, 2), . . . , P (n, i), P (n, i + 1), . . . , P (n, n)

is increasing until P (n, i) and decreasing from P (n, i + 1). We have observed that
P (n, i) = P (n, i + 1), so P (n, k) is largest when k takes the two values k = i and
k = i + 1.

(ii) We now assume for some integer i that Ti < n < Ti+1. Since n is not a triangular
number, we know that there is no k ≤ n for which P (n, k) = P (n, k+1). Rearranging
the first two conditions in the bulleted list above, we have that P (n, k) < P (n, k + 1)

for any k satisfying
k(k + 1)

2
< n and P (n, k) > P (n, k + 1) for any k satisfying

k(k + 1)

2
> n. This means the probabilities P (n, k) strictly increase while k satisfies

k(k + 1)

2
< n and decrease thereafter. By our assumption, i is the largest integer with

the property that n >
i(i + 1)

2
= Ti. This means that among all positive integers

k ≤ n, P (n, k) is largest when k = i + 1.

To answer the question, we need to show that

i + 1 =

⌊
1 +
√

1 + 8n

2

⌋
.

We are assuming that Ti < n < Ti+1, which means

i(i + 1)

2
< n <

(i + 1)(i + 2)

2
.

The left inequality rearranges to i2 + i− 2n < 0. The roots of i2 + i− 2n are

i =
−1±

√
1 + 8n

2
.

and so for the inequality i2 + i − 2n < 0 to be satisfied, we need to have i less than
the larger of these roots. We conclude that

i <
−1 +

√
1 + 8n

2
.

The other inequality rearranges to 0 < i2 + 3i+ 2− 2n. The polynomial on the right
has roots

i =
−3±

√
32 − 4(2− 2n)

2
=
−3±

√
1 + 8n

2
.

For the inequality 0 < i2 + 3i + 2− 2n to be satisfied, i must be either smaller than
the smaller root, or larger than the larger root. The smaller of these two roots is
negative, so since we also require that i > 0, we have that

−3 +
√

1 + 8n

2
< i.



Using that this quantity is exactly one less than
−1 +

√
1 + 8n

2
, we now have that

the integer i satisfies

−1 +
√

1 + 8n

2
− 1 < i <

−1 +
√

1 + 8n

2
.

Thus, we have that the integer i is between two quantities differing by exactly 1. As
long as the bounding quantities are not integers, this means i must be the largest

integer that is less than or equal to
−1 +

√
1 + 8n

2
. In other words, as long as

−1 +
√

1 + 8n

2
is not an integer, we will have

i =

⌊
−1 +

√
1 + 8n

2

⌋
.

To finish the proof, suppose there is an integer m such that m =
−1 +

√
1 + 8n

2
.

Rearranging leads to (2m + 1)2 = 1 + 8n or 4m2 + 4m + 1 = 1 + 8n. Solving for n
gives

n =
4m2 + 4m

8
=

m2 + m

2
=

m(m + 1)

2

which would mean that n is a triangular number. We are assuming this is not the

case, so
−1 +

√
1 + 8n

2
is not an integer. Therefore,

i + 1 =

⌊
−1 +

√
1 + 8n

2

⌋
+ 1 =

⌊
1 +
√

1 + 8n

2

⌋

(d) We will begin by computing the peaks for a few small positive integers. To add to the
work from part (c), we note that P (1, 1) = 1, and so n = 1 has a unique peak of 1. We
will use that when n = Ti for some integer i > 1, there are two peaks for n and they occur
at k = i and k = i + 1, as well as the fact that when n is not a triangular number, there
is a unique peak for n and it occurs at

k =

⌊
1 +
√

1 + 8n

2

⌋
.

Keeping in mind that the first few triangular numbers are 1, 3, 6, 10, 15, and 21, we have

n Peaks for n n Peaks for n n Peaks for n
1 1 9 4 17 6
2 2 10 4, 5 18 6
3 2, 3 11 5 19 6
4 3 12 5 20 6
5 3 13 5 21 6, 7
6 3, 4 14 5 22 7
7 4 15 5, 6 23 7
8 4 16 6 24 7

You may notice that a rather tidy pattern has started to emerge. It appears that with the
exceptions of k = 1 and k = 2, the integer k occurs as a peak k + 1 times, and it occurs as



a peak for the numbers between Tk−1 and Tk inclusive. Therefore, we expect k = 2019 to
occur 2020 times as a peak.

First, suppose k = 2019 occurs as a peak for some triangular number n. From earlier work,
this means n = 2 039 190 = T2019 or n = 2 037 171 = T2018. This gives two integers n for
which 2019 is a peak. Otherwise, for 2019 to be a peak for n, we must have

2019 =

⌊
1 +
√

1 + 8n

2

⌋
which means

2019 ≤ 1 +
√

1 + 8n

2
< 2020.

This can be rearranged to get 4037 ≤
√

1 + 8n < 4039 which can be further rearranged to
get 2 037 171 ≤ n < 2 039 190. Combining this with the other two numbers for which 2019
is a peak, the integers n for which 2019 is a peak are exactly those that satisfy

2 037 171 ≤ n ≤ 2 039 190.

This is a total of 2 039 190− 2 037 170 = 2020 integers.



Problem of the Month
Problem 3: December 2020

Problem
You and a friend are playing games involving a 6 × 6 grid with a coin in each cell. In each game,
your friend arranges the coins so that each coin shows either a head or a tail. An arrangement of
coins is called winnable if it is possible to perform a sequence of legal moves that results in all 36
coins showing a head. Each game has a different set of legal moves.

(a) In the first game, a legal move consists of flipping over exactly three of the four coins in a
2×2 subgrid. Each grid below has three cells highlighted. In each of these two grids, flipping
over the coins in the highlighted cells is an example of a legal move.

(b) In the second game, a legal move consists of flipping over all four of the coins in a 2 × 2
subgrid. In the grid below, flipping over the four coins in the highlighted cells is an example
of a legal move.

(c) In the third game, a legal move consists of flipping over all 6 of the coins in a 3 × 2 or 2 × 3
subgrid. In each of the two grids below, flipping over the coins in the highlighted cells is an
example of a legal move.

For each of the three games, determine how many of the 236 arrangements are winnable. In all
three games, subgrids must be “connected”. For example, the four corners of the 6 × 6 grid is not
a 2 × 2 subgrid.



Hint

In all three parts, it is a good idea to try some examples. It is also useful to note that the order in
which moves are performed does not affect the outcome of the moves. As well, performing a move
twice has no overall effect on the coins.

(a) Consider an arrangement of coins that has 1 coin showing a tail and the rest showing heads.
Is this arrangement winnable?

(b) What happens to the parity of the number of tails in each row and column when a legal move
is performed?

(c) Are there any legal moves that you do not need? That is, are there any moves with the
property that if an arrangement is winnable, then it is winnable without using that move?



Problem of the Month
Solution to Problem 3: December 2020

(a) In the first game, every arrangement is winnable. We will show this by describing how to
win any arrangement.

Observe that every cell is a member of either one, two, or four 2 × 2 subgrids depending
on if the cell is on an edge, in a corner, or in the “interior” of the grid. What is important
for this argument is that every cell is in at least one 2× 2 subgrid.

Suppose a coin is showing a tail and that it is the top-left coin in some 2× 2 subgrid:

T

? ?

?

The question marks indicate that the coin in that cell could be showing either a head or
a tail.

It is possible to change the indicated tail to a head without changing the other three coins.
This can be done by performing the three moves below where the cells in which coins will
be flipped are marked by an X.

X

X X

X

X

X X

X

X

After performing these three legal moves, the coin in the top left corner has been flipped
three times, so it will now be showing a head. The other three coins in the 2× 2 subgrid
were flipped twice each, so they will each be showing what they were showing before the
moves were performed. No other coins in the grid were flipped, so this sequence of three
legal moves has the effect of changing one coin from showing a tail to showing a head and
does not change what any other coins are showing.

A similar sequence of three moves can be used to change a tail to a head if it is in one of
the other corners of a 2× 2 subgrid. Thus, it is possible to change any one tail to a head
without changing any other coins, so every arrangement can be won by changing the tails
to heads one at a time. We note that the technique for winning described above may not
win in the smallest possible number of moves.

(b) A simple yet useful observation for this game is that the parity of the number of tails in
any given row or column will not change as a result of a legal move.

Each legal move affects two rows and two columns and flips two coins in each of these two
rows and two columns. For the cells of a row affected by a legal move, one of the following
four situations occurs:



−→H H T T −→T T H H

−→H T T H −→T H H T

In the two situations illustrated on the top, the number of tails in that row will either
decrease by two or increase by two. In the two situations illustrated on the bottom, the
number of tails in the affected row does not change. A similar argument shows that the
number of tails in a column either increases by two, decreases by two, or stays the same
after any legal move.

This means that if some row or column has an odd number of tails in the initial arrange-
ment, then it will still have an odd number of tails after any number of legal moves. For
an arrangement to be winnable, it must be possible to perform a sequence of legal moves
resulting in the number of coins showing tails in each row and column to be 0. Since 0
is even, this means a winnable arrangement must have an even number of tails in each
row and each column. We will call an arrangement of the coins “good” if there is an even
number of tails in each row and an even number of tails in each column.

We just argued that if an arrangement is winnable, then it is good. We will next show
that if an arrangement is good, then it is winnable. This will show that the winnable
arrangements are exactly the good arrangements, so we will be able to count the winnable
arrangements by counting the good arrangements.

Suppose an arrangement of the coins is good. A fundamental fact, which we argued above,
is that a legal move transforms a good arrangement into an other good arrangement.

One strategy of winning is to systematically change all coins to show heads, row by row,
starting with the top row. If there is a tail in the top row, locate the leftmost tail in the
top row. Since the arrangement is good, the number of tails in the top row is even, so
there must be at least one tail in the top row to the right of this tail. That is, the leftmost
tail in the top row is in one of the first five columns. In the example illustrated below, it
occurs in the third column. This means it is a legal move to flip the four coins with this
tail in the top-left corner. Doing so will change the leftmost tail to a head.

H H T ? ? ?

? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?

−→

H H H ? ? ?

? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?

This move may change some heads to tails in the second row and may even change a head
to a tail in the top row (if there was a head immediately to the right of the leftmost tail).
However, as mentioned above, the new arrangement is still good, and the leftmost tail in
the top row must now be further to the right.

After no more than four legal moves, the top row will either contain no tails or the leftmost
tail will be in the fifth column. In the latter situation, the rightmost coin in the top row
must also be showing a tail because the number of tails in the top row is even. Flipping



the four coins in the top right corner of the grid will now make every coin in the top row
show a head.

Once the top row has no tails in it, this procedure can be applied to the second row. Once
the second row contains to tails, it can be applied to the third row, then the fourth, and
finally the fifth. This means that a sequence of legal moves can be performed to leave the
coins arranged so that every coin in the first five rows is showing a head.

However, this procedure cannot be applied to the bottom row since there is no “room”.
Flipping a coin in the bottom row necessarily flips coins in the fifth row, which has already
been changed to show only heads. However, it turns out that since the arrangement was
good, changing the coins in the first five rows to all show heads will force the coins in the
sixth row to all show heads as well, meaning the game has already been won.

To see that this is true, suppose a good arrangement has no coins showing tails in the first
five rows. In any column, if the coin in the bottom row showed a tail, then there would be
an odd number of tails in that column. The arrangement is good, so this is not possible.
Therefore, the coins in the bottom row must also be showing heads.

We have shown that every good arrangement is winnable, which shows that the good
arrangements are exactly the winnable arrangements. To answer the question, we will
count the good arranagements.

To do this, denote by x the number of subsets of a set of 6 objects that have an even
number of elements. With this notation, in any given row (or column), there are x ways
to arrange the coins so that an even number of them are showing tails. We will show that
the number of good arrangements is x5 and compute the exact value of x later.

Notice that there are x5 ways to arrange the coins in the first 5 rows so that there is an
even number of tails in each of these rows. We will now prove the following claim: Every
arrangement of an even number of tails in the first 5 rows can be “extended” in a unique
way to a good arrangement.

To prove the claim, suppose the coins in the first 5 rows are arranged so that they each
contain an even number of tails. To extend this to a good arrangement, we must decide
how to arrange the coins in the bottom row. In order to have an even number of tails in
each column, there is no choice to make: if there are an even number of tails in the first 5
cells of a column, then the final cell in that column must show a head. If there are an odd
number of tails in the first 5 cells of a column, then the final coin must show a tail. Thus,
if the arrangement of the coins in the first 5 rows can be extended to a good arrangement,
then there is only one way to do it. All that remains is to show that the way of arranging
the coins in the bottom row described above will produce an even number of tails in the
bottom row.

This can be seen by observing that since there are an even number of tails in each column,
there must be an even number of tails in total. Since the number of tails in the first 5
rows is even, it must be the case that the number of tails in the last row is even as well.
Otherwise, the total number of tails in the grid would be odd.

You may wish to pause to dwell on the logic, but we have now shown that the number of
good arrangements is equal to the number of ways to arrange the coins so that there are
an even number of tails in each of the first five rows. As mentioned above, this leads to
the number of good arrangements being equal to x5. It remains to compute x.



Suppose X is a set of 6 objects. We will count the number of subsets that have an even
number of elements. That is, we will count the number of subsets of X that contain exactly
0, 2, 4, or 6 elements.

The empty set is the only subset of X that contains 0 elements. Likewise, the set X itself

is the only subset of X that contains 6 elements. There are
6× 5

2
= 15 subsets with 2

elements. This is because there are 6 ways to choose one element, 5 ways to choose a
second, and this counts each subset exactly twice. “Choosing” 2 elements is the same
as “ignoring” 4 elements, so the number of subsets with 4 elements is also equal to 15.
Therefore, we have that x = 1 + 15 + 15 + 1 = 32.

In fact, it is not a coincidence that x = 25 and the total number of subsets of X is 26.
Indeed, if X is a set of n elements for any any positive integer n, then there are 2n subsets
of X in total, exactly 2n−1 of which contain an even number of elements. Put another way,
exactly half of the subsets of a set have an even number of elements. You might want to
try to prove this in general.

We can now answer the question: There are (25)5 = 225 winnable arrangements.

(c) Throughout this solution, a sequence of legal moves will be called a “winning sequence” if
it causes all coins in a given arrangement to show heads.

There are a total of 40 legal moves, but we will give names to 9 of them, pictured below.

Move 1 Move 2 Move 3

Move 4 Move 5 Move 6

Move 7 Move 8 Move 9



In the first part of this solution, we will argue that any winnable arrangement has a winning
sequence that does not use any of Moves 1 through 9. This will allow us to show that there
are at most 240−9 = 231 winnable arrangements. After that, we will demonstrate that there
are at least 231 winnable arrangements. These two facts together will imply that there are
exactly 231 winnable arrangements.

Consider any 4× 4 subgrid. There are 12 moves that flip only coins in this subgrid:

Suppose we perform each of the moves above once, except the first one. The grid below
indicates how many times each coin will be flipped. The highlighted cells are those in
which the coin is flipped an odd number of times.

2 4 4 2
3 7 8 4
3 7 8 4
1 3 4 2

If a coin is flipped an odd number of times, it has changed from showing a head to showing
a tail, or vice versa. If a coin is flipped an even number of times, there will be no change
in what it shows. This means the effect of the first move can be “simulated” by the other
eleven. That is, if a move flips coins in the top-left 3×2 subgrid of a 4×4 subgrid, its effect
can be achieved using the other eleven moves that flip coins only in that 4 × 4 subgrid.
This is what will allow us to “eliminate” Moves 1 through 9.

Suppose we have a winnable arrangement and a winning sequence. By replacing each
(if any) occurrence of Move 1 by the eleven other moves described above, we get a new
winning sequence that does not use Move 1. This new sequence will be longer than the
original and will have new occurrences of Moves 2, 3, 4, 5, and 6. The key is that if an
arrangement is winnable, then there is a winning sequence that does not use Move 1.

Next, consider Move 2. The eleven moves that can be used to replace an occurrence of
Move 2 include Moves 3, 5, and 6 (among others), but do not include Move 1. We can now
take our winning sequence (that does not include Move 1) and replace every occurrence
of Move 2 by eleven other moves. Again, the sequence will get longer and there will be
new occurrences of Moves 3, 5, and 6, but Move 1 will not be reintroduced. Thus, if an



arrangement is winnable, then there is a winning sequence that does not use Move 1 and
does not use Move 2.

Next, each occurrence of Move 3 can be replaced by eleven other moves. Considering the
diagrams above carefully, this will not reintroduce Move 1 or Move 2 to the sequence.
We can then continue this way to see that if there is a winning sequence, then there is
a winning sequence that does not use any of Moves 1 through 9. The new sequence will
have more moves, but the key is that it uses at most 40− 9 = 31 distinct moves. [It is not
directly important for this argument, but removing nine moves is in fact the “best” that
we can do. By the end of the solution, you might have a better idea of what this means
and why it is true.]

We can further refine the winning sequence by removing repetitions. As noted earlier and
mentioned in the hint, the order in which moves are applied does not matter. This is
because the overall effect of a sequence of moves on an individual coin is only influenced
by how many times that coin is flipped, not by when it is flipped. Thus, to know what
effect a sequence has on a given coin, one needs only to count how many times it is flipped.
Performing any individual move twice contributes an even number of flips of each coin
(either 0 or 2), which means that we can get a shorter winning sequence by eliminating
“pairs” of the same move.

Therefore, if an arrangement is winnable, then there is a winning sequence that uses at
most 31 moves and does not use any move more than once. Since the order does not
matter, there are essentially only 231 winning sequences: For each of the 31 moves, we
either use it or do not use it. Since every winning arrangement can be won in one of 231

ways, there cannot be more than 231 winnable arrangements.

We will show that there are at least 231 winnable arrangements by building as many. This
will be done using reasoning similar to that in part (b). It should be pointed out that in
this part of the argument, we are only concerned with whether or not an arrangement is
winnable, so we will not worry about whether or not we are using Moves 1 through 9.

Suppose three consecutive coins in a row are flipped. If the number of tails in that row
was even, it will now be odd, and if the number of tails in that row was odd, it will now
be even. This can be seen using a similar argument to the one at the beginning of the
solution to part (b).

Following similar reasoning to part (b), we can change the coins in the grid to heads row
by row. Starting with the first row, if there are an odd number of tails, apply the move
indicated below:

This will flip three coins in the first row making the number of tails in the first row even.
By using the five moves that flip exactly two coins in the top row (the “3 × 2” moves),
the top row can be changed so that it shows all heads using the same reasoning as in part
(b). This will potentially change some heads to tails below the top row, but the important
thing is that the top row will contain all heads.



Next, the same idea can be used to change all coins in the second row to show heads. If
there are an odd number of tails in this row, apply the move

This will change the coins so that there are an even number of tails in the second row.
Using the five moves that flip exactly two coins in the second row and no coins in the top
row, the second row can be changed so that all coins show a head. In a similar way, the
coins can be changed so that there are no tails in the top three rows and all remaining
tails are in the bottom three rows.

We will now argue that it is possible to perform a sequence of moves to get all remaining
tails in the 3× 2 subgrid in the bottom-right corner of the array.

First, focus on the three cells highlighted below:

H
H
H
?
?
?

If the coins in these cells all show heads, then there is nothing to do. Otherwise, there are
seven possibilities.

If all three of them show a tail, then the move

will not change any coins in the top three rows, and will make all coins in the first (leftmost)
column show heads.

For each of the other six possibilities, it is possible to change the coins in the first column
to all show heads without changing any coins in the first three rows. For example, if the
coins in the first column are arranged

H
H
T
H
H
H

then the two moves below will achieve this:



The other five situations can be dealt with similarly, in each case using at most three
moves.

This argument can be repeated to ensure that the first four columns contain all heads.
Therefore, it is possible, no matter how the coins were arranged, to use a sequence of legal
moves to convert the arrangement to

H
H
H
H
H
H

H
H
H
H
H
H

H
H
H
H
H
H

H
H
H
H
H
H

?
?
?

?
?
?

H
H
H

H
H
H

so that all remaining tails (if any) are in the cells marked with question marks.

We will now explain how to construct 231 winnable arrangements. For brevity, we will
refer to the coins in the 30 cells outside those marked with question marks above as the
“first 30” and the other 6 coins as the “last 6”. We will show that for every arrangement
of the first 30 coins, there are at least two arrangements of the last 6 coins that make the
overall arrangement winnable.

Consider an arbitrary arrangement of the first 30 coins and arrange the last 6 coins to all
show heads. We do not claim that this arrangement is winnable, but it will help us to find
winnable arrangements.

In the way described earlier, perform a sequence of legal moves so that all remaining tails
(if any) are among the last 6 coins. For example, perhaps the last 6 coins are arranged as
indicated below:

H
T
H

H
T
H

The overall effect of this sequence of legal moves is to do two things: change all of the first
30 coins to show heads, and flip the coins in the last 6 that are now showing tails. In the
example above, it flips the two coins in the middle. To construct a winnable arrangement,
arrange the first 30 coins in the same way as before but arrange the last 6 exactly as they
are shown above. The sequence of legal moves will still make the first 30 coins show heads,
but since we know the sequence flips the “middle two” of the last 6 coins, the sequence
will actually change the whole grid to show heads.

In general, we can generate a winnable arrangement by following these steps.

(i) Arrange the first 30 coins arbitrarily and the last 6 to show heads.

(ii) Perform a sequence of legal moves so that all tails (if any) are among the last 6 coins.



(iii) A winnable arrangement can now be found by arranging the first 30 coins in the same
way as in (i), but arranging the last 6 in the way they appeared after (ii).

The sequence of moves in (ii) will change the arrangement in (iii) to show all heads. This
is because in (ii) we learn the overall effect of the moves on the last 6 coins, so in (iii) we
can set them up so that they will be flipped to show heads. Thus, we get at least one
winnable arrangement corresponding to the given arrangement of the first 30 coins.

To get another, in step (iii) instead arrange the last 6 coins in a way opposite to how they
appeared after step (ii). This is a different arrangement because all of the last 6 coins will
be different from the other arrangement. Performing the sequence of legal moves will now
result in the last 6 coins all showing tails. The arrangement can then be changed to show
all heads by flipping all of the last 6 coins, which is a legal move.

Therefore, there are at least 2×230 = 231 winnable arrangements. In fact, this also explains
how to win. That is, perform a sequence of legal moves to force all tails to the last 6 coins.
If the arrangement was winnable, then these coins will either all show tails or all show
heads. At most one more move will convert all coins to heads. If any other arrangement
appears in the last 6 coins, then the arrangement was not winnable in the first place.

It is interesting to note that things actually do not get much more complicated if the games
are played on an n × n grid with n > 6. In part (a), the same argument shows that every
arrangement is winnable. In part (b), if the game were played on an n×n grid, then 2(n−1)×(n−1)

of the 2n×n arrangements are winnable. Notice that this means that if the coins are arranged
randomly, then the probability that the arrangement is winnable is

2n2−2n+1

2n2 =
1

22n−1

which gets very small as n gets large. Thus, if your friend arranges the coins randomly in the
game in (b), there is a very small chance that the arrangement is winnable.

On the other hand, extending the reasoning in part (c) shows that there are 2n2−5 winnable
arrangements, so the probability that a random arrangement is winnable in the game in (c) is

2n2−5

2n2 =
1

25
=

1

32

which does not depend on n.



Problem of the Month
Problem 4: January 2021

Problem

In this problem, we will explore when a quadratic polynomial of the form x2 + ux + v can be
decomposed as the sum of the squares of two other polynomials. Keep in mind that a constant
function is a polynomial. All polynomials in the problem statements below are assumed to have
real coefficients, though they may not have real roots.

(a) Find at least three pairs
(
p(x), q(x)

)
of polynomials such that (p(x))2+(q(x))2 = x2+2x+2.

(b) Suppose f(x) = x2 + ux + v has the property that f(x) ≥ 0 for all real numbers x. Prove
that there are polynomials p(x) and q(x) such that x2 + ux+ v = (p(x))2 + (q(x))2.

In the remaining parts of this problem, we will say that the pair of polynomials
(
p(x), q(x)

)
is

special for the polynomial x2 + ux+ v if

• the coefficients of p(x) and q(x) are all rational, and

• x2 + ux+ v = (p(x))2 + (q(x))2.

(c) Prove that there are no special pairs for x2 + x+ 1.

(d) Prove that if there is a special pair for x2 + ux+ v, then u and v are both rational and there
is a rational number r such that 4v − u2 = r2.

(e) Prove that if there is a special pair for x2 + ux + v, then there are infinitely many special
pairs for x2 + ux+ v.



Hint

(a) Expand the expression on the left side of (ax+ b)2 + (cx+ d)2 = x2 + 2x+ 2 and look at the
resulting coefficients.

(b) What if q(x) is constant?

(c) If real numbers s and t satisfy s2 + t2 = 1, then there is a real number θ with the property
that s = cos θ and t = sin θ.

(d) Compute 4v − u2 in terms of the coefficients of p(x) and q(x).

(e) Try to link Pythagorean triples to angles θ with the property that cos θ and sin θ are both
rational.



Problem of the Month
Solution to Problem 4: January 2021

(a) One such pair of polynomials is rather easy to spot:

(x+ 1)2 + 12.

Here are two other pairs that are less easy to spot:(
3

5
x+

7

5

)2

+

(
4

5
x+

1

5

)2

and (
5

13
x+

17

13

)2

+

(
12

13
x+

7

13

)2

.

In fact, if m2 + n2 = p2 for integers m, n, and p, then(
m

p
x+

m+ n

p

)2

+

(
n

p
x+

n−m
p

)2

= x2 + 2x+ 2.

We will explore how one might discover such a parameterization of solutions in part (d).

(b) By completing the square, we can write f(x) in vertex form. That is, there are h and k
such that f(x) = (x − h)2 + k. Since f(x) ≥ 0 for all x, f(h) = k ≥ 0, so

√
k is a real

number. This means f(x) = (x − h)2 +
(√

k
)2

. The function q(x) =
√
k is a constant

polynomial. In terms of u and v, one can check that h = −u
2

and k = v − u2

4
.

(c) Using the idea from part (b), we have that

x2 + x+ 1 =

(
x+

1

2

)2

+

(√
3

2

)2

,

so there are polynomials p(x) and q(x) that satisfy x2 + x+ 1 = (p(x))2 + (q(x))2. We will
show that if p(x) and q(x) satisfy x2 + x+ 1 = (p(x))2 + (q(x))2, then at least one of p(x)

and q(x) has an irrational coefficient. Observe that since

√
3

2
is irrational, this is the case

for the particular example above.

Since x2 +x+1 is a quadratic, the degrees of both p(x) and q(x) must be no larger than 1.
Otherwise, the sum of their squares would have degree at least 4. You may wish to think
about this point. Keep in mind that the leading coefficient of the square of a polynomial
must be positive. Therefore, there are real numbers a, b, c, and d (some of which could be
zero) so that p(x) = ax+ b and q(x) = cx+ d. So

x2 + x+ 1 = (ax+ b)2 + (cx+ d)2

= (a2 + c2)x2 + 2(ab+ cd)x+ (b2 + d2).



If two polynomials written in standard form are equal, then they must have the same
coefficients. Therefore, we get the equations

a2 + c2 = 1

b2 + d2 = 1

ab+ cd =
1

2
.

From the first two equations, the points (a, c) and (b, d) lie on the unit circle. This means
there are α, β in the interval [0, 2π) satisfying the equations

cosα = a

sinα = c

cos β = b

sin β = d.

Substituting this into ab+ cd =
1

2
, we get

cosα cos β + sinα sin β =
1

2

and after noticing that the left side of this equation is equal to cos(α − β), we conclude
that

cos(α− β) =
1

2
.

We have assumed that both α and β are in the interval [0, 2π), so this means α − β is in

the interval (−2π, 2π). Together with cos(α−β) =
1

2
, this means α−β is one of ±π

3
,±5π

3
.

We now assume that all of a, b, c, and d are rational and reach a contradiction. There are
four cases corresponding to the possible values of α−β. We will go through the case where

α− β = −π
3

. The other cases can be handled similarly.

Assume α− β = −π
3

which can be rearranged to β = α +
π

3
. Then

d = sin β

= sin
(
α +

π

3

)
= sinα cos

(π
3

)
+ cosα sin

(π
3

)
=
c

2
+ a

√
3

2
.

Rearranging, we have

a

√
3

2
= d− c

2
.

If a 6= 0, then this can be further rearranged to
√

3 =
2

a

(
d− c

2

)
. The expression on the

right is rational since a, c, and d are rational. However,
√

3 is irrational so this equality
cannot be true. This means we must have a = 0.



From the equation a2 + c2 = 1, we then get c2 = 1 so c = ±1. As well, cd =
1

2
, so d = ±1

2
,

which means d2 =
1

4
. Therefore, b2 = 1− 1

4
=

3

4
, so b = ±

√
3

2
, neither of which is rational.

This contradicts the assumption that b is rational. We conclude that α − β 6= −π
3

if

all four of a, b, c, and d are to be rational. It can be shown that each of the other
three possibilities for the value of α − β leads to a similar contradiction. Therefore, if
x2 + x+ 1 = (p(x))2 + (q(x))2, then at least one of p(x) and q(x) must have an irrational
coefficient.

(d) Suppose there is a special pair for x2 +ux+ v. This means there are polynomials p(x) and
q(x), with all coefficients rational, such that x2 + ux+ v = (p(x))2 + (q(x))2. By the same
reasoning as in part (c), p(x) and q(x) both have degree at most 1. Therefore, there are
rational numbers a, b, c, and d so that

x2 + ux+ v = (ax+ b)2 + (cx+ d)2

Expanding and equating coefficients gives

a2 + c2 = 1

2(ab+ cd) = u

b2 + d2 = v.

Since a, b, c, and d are rational, so are u and v (since products and sums of rational
numbers are rational), which verifies the first part of the problem. To see that 4v − u2 is
a rational square, observe that

4v − u2 = 4(b2 + d2)− (2ab+ 2cd)2

= 4b2 + 4d2 − 4a2b2 − 8abcd− 4c2d2

= 4b2(1− a2) + 4d2(1− c2)− 8abcd

= 4b2c2 + 4a2d2 − 8abcd (since a2 + c2 = 1)

= 4
(
(ad)2 − 2(ad)(bc) + (bc)2

)
= 4(ad− bc)2

= (2ad− 2bc)2

Since a, b, c, and d are rational, the quantity 2ad − 2bc is also rational. Therefore, if we
take r = 2ad− 2bc, then we have 4v − u2 = r2.

(e) We assume that there is at least one special pair for x2+ux+v. Using this assumption, our
goal is to produce infinitely many quadruples of rational numbers (a, b, c, d) that satisfy
x2 + ux+ v = (ax+ b)2 + (cx+ d)2.

As in part (d), we can expand the right side of x2 + ux + v = (ax + b)2 + (cx + d)2 and
equate coefficients to get

a2 + c2 = 1

2(ab+ cd) = u

b2 + d2 = v,

so we seek rational solutions to the above system of equations. For the first equation to
be satisfied, there must be a real number θ such that cos θ = a and sin θ = c. Substituting



these into the second equation above, we get

b cos θ + d sin θ =
u

2
. (1)

Since there is at least one special pair for x2 + ux + v, part (d) implies that there is a
rational number r satisfying r2 = 4v − u2. By the calculation at the end of part (d), we
have 4v − u2 = (2ad− 2bc)2. Combining these two equations and taking square roots, we

have ad − bc = ±r
2

. This means any quadruple satisfying the system must also satisfy

either ad − bc =
r

2
or ad − bc = −r

2
. We will proceed by solving for the quadruples

satisfying ad− bc =
r

2
as this will be sufficient to find infinitely many special pairs. (You

may wish to consider what happens if we solve for quadruples satisfying ad− bc = −r
2

as

well.)

Substituting a = cos θ and c = sin θ into, ad− bc =
r

2
, we have

d cos θ − b sin θ =
r

2
. (2)

We will now argue that if θ, b, and d satisfy equations (1) and (2), then taking a = cos θ
and c = sin θ results in a quadruple (a, b, c, d) satisfying x2 +ux+v = (ax+ b)2 +(cx+d)2.
(Keep in mind that in this context u, v, and r are fixed quantities and a, b, c, d, and θ
are variables. Also, at this point we are not worrying about whether or not a, b, c, and d
are rational. This part of the argument will wait until the end.) To that end, assume θ,
b, and d satisfy equations (1) and (2) and set a = cos θ and c = sin θ. We need to show
that a2 + c2 = 1, 2(ab + cd) = u, and b2 + d2 = v. That a2 + c2 = 1 follows from the
Pythagorean identity. That 2(ab + cd) = u follows simply by multiplying equation (1) by
2. To see that b2 + d2 = v, we first square both sides of equations (1) and (2) to get

b2 cos2 θ + d2 sin2 θ + 2bd cos θ sin θ =
u2

4

and

d2 cos2 θ + b2 sin2 θ − 2bd cos θ sin θ =
r2

4
.

Adding these two equations gives

(b2 + d2) cos2 θ + (b2 + d2) sin2 θ =
1

4
(u2 + r2).

Factoring and using that r2 = 4v − u2 we get

(b2 + d2)(cos2 θ + sin2 θ) =
1

4
(u2 + 4v − u2) = v

and since cos2 θ + sin2 θ = 1, we have the desired result.

We will next argue that for every real number θ, there are real numbers b and d so that
equations (1) and (2) are both true. Since u and r are fixed quantities, if we fix θ and
view b and d as variables, equations (1) and (2) give a system of two linear equations



in two unknowns. To solve for b and d, we can first multiply equation (1) by cos θ and
equation (2) by − sin θ to get

b cos2 θ + d sin θ cos θ =
u

2
cos θ

b sin2 θ − d sin θ cos θ = −r
2

sin θ

and adding these equations gives

b(cos2 θ + sin2 θ) =
1

2
(u cos θ − r sin θ)

which implies b =
1

2
(u cos θ − r sin θ). A similar calculation can be used to find that

d =
1

2
(u sin θ + r cos θ). Thus, for any real θ, if we set a = cos θ, b =

1

2
(u cos θ − r sin θ),

c = sin θ, and d =
1

2
(u sin θ + r cos θ), then we have x2 + ux+ v = (ax+ b)2 + (cx+ d)2.

We will now use this to show that there are infinitely many rational quadruples (a, b, c, d)
satisfying x2 +ux+v = (ax+ b)2 +(cx+d)2. First, from part (d) we have that u and r are
rational. This means that if cos θ and sin θ are both rational, then a, b, c, and d as defined
above will also be rational. If we take θ to be one of the non-right angles in a right-angled
triangle with integer side lengths, then we will have that cos θ and sin θ are both rational.
(This is the idea that was used at the end of the solution to part (a).) However, this does
not immediately imply that we get infinitely many distinct rational values of cos θ because
some of these triangles will be similar.

To deal with this issue, we will consider a particular family of right-angled triangles with
integer side lengths. For each integer n > 1, the triangle with side lengths n2 − 1, 2n, and
n2 + 1 is a right-angled triangle. For each n > 1, define θn to be the angle at which the
sides of length 2n and n2 + 1 meet. Note that the side of length n2 + 1 is the longest, so it

must be the hypotenuse. Then cos θn =
2n

n2 + 1
and sin θn =

n2 − 1

n2 + 1
. Therefore, for every

integer n > 1, we get a special pair
(
ax+ b, cx+ d

)
by setting

a =
2n

n2 + 1

c =
n2 − 1

n2 + 1

b =
1

2

(
2un

n2 + 1
− r(n2 − 1)

n2 + 1

)
d =

1

2

(
u(n2 − 1)

n2 + 1
+

2rn

n2 + 1

)
Furthermore, it is not a difficult exercise to show that cos θn+1 < cos θn, which means that
the values of a that arise this way are all different, so we indeed get infinitely many special
pairs for x2 + ux+ v.



Problem of the Month
Problem 5: February 2021

Problem

For an integer n ≥ 3, we define Tn to be the triangle with side lengths n − 1, n, and n + 1, and
define An to be the area of Tn. We will say that an integer n ≥ 3 is remarkable if An is an integer.

(a) Determine all integers n for which Tn is right-angled.

(b) Suppose n is a remarkable integer. Prove that

(i)
n2 − 4

3
is a perfect square,

(ii) n is not a multiple of 3, and

(iii) n is even.

(c) There are three remarkable integers less than or equal to 100. Determine these three integers.

(d) The only remarkable integers between 100 and 10 000 are n = 194, n = 724, and n = 2702.
Find a polynomial function f(n) of degree greater than 1 with the property that if n is a
remarkable integer, then f(n) is also a remarkable integer. Use this polynomial to deduce
that there are infinitely many remarkable integers.

(e) Explain how to find all remarkable integers. This should involve somehow describing an
infinite set of remarkable integers as well as justification that your set is complete. Keep in
mind that the infinite set from part (d) may not include all remarkable integers.



Hint

(a) No hint given.

(b) Using Heron’s formula, it is possible to find an expression for An in terms of n.

(c) Sometimes it is faster to check all possibilities than to find a more clever approach. The
conditions in part (b) can be used to eliminate about two thirds of the integers between 3
and 100.

(d) There is at least one such polynomial of degree 2.

(e) Try to find a few pairs (a, b) of positive integers that satisfy the equation a2 − 3b2 = 1.
Compare the values of a to the known remarkable integers. Factoring the equation above as
(a + b

√
3)(a− b

√
3) = 1 and taking small positive integer powers of both sides may provide

some insight into how one might generate more integer solutions to a2 − 3b2 = 1.



Problem of the Month
Solution to Problem 5: February 2021

This solution has an appendix containing various additional material relating to this problem.
It is our hope that the solution can be read and understood without needing to look at the
appendix.

(a) In a right-angled triangle, the hypotenuse is always the longest side. Therefore, if Tn is
right-angled, then the Pythagorean Theorem implies that (n− 1)2 + n2 = (n + 1)2 which
can be simplified to n2 − 4n = 0. Factoring the left side leads to n(n − 4) = 0 so n = 0
or n = 4. Since n ≥ 3, we must have n = 4. Indeed, the triangle with side lengths 3, 4,
and 5 is right-angled by the converse of the Pythagorean Theorem (see Appendix (1)), so
n = 4 is the only n for which Tn is right-angled.

(b) We will find a formula for An in terms of n. Here we present a derivation using Heron’s
formula. Appendix (2) contains a derivation using trigonometry.

Heron’s formula states that if a triangle has side lengths a, b, and c, its area is√
s(s− a)(s− b)(s− c)

where the quantity s =
a+ b+ c

2
is called the semiperimeter of the triangle.

The semiperimeter of Tn is s =
(n− 1) + n+ (n+ 1)

2
=

3n

2
. The other three quantities

needed for Heron’s formula are s− (n− 1), s− n, and s− (n+ 1), which can be simplified
to

s− (n− 1) =
3n

2
− 2(n− 1)

2

=
n+ 2

2

s− n =
3n

2
− 2n

2

=
n

2

s− (n+ 1) =
3n

2
− 2(n+ 1)

2

=
n− 2

2
.

Using Heron’s formula and simplifying gives

An =
√
s
(
s− (n− 1)

)(
s− n

)(
s− (n+ 1)

)
=

√(
3n

2

)(
n+ 2

2

)(n
2

)(n− 2

2

)
=

1

4

√
3n2(n− 2)(n+ 2)

=
n

4

√
3(n2 − 4) (Ssince n > 0)



Now suppose that n is a remarkable integer, which means that An is an integer. We will
verify that (i), (ii), and (iii) are true. Rearranging the formula for An from above, we get
4An

n
=
√

3(n2 − 4). The quantity 3(n2 − 4) is a positive integer. Positive integers have

the property that their square roots are either integers or irrational numbers. (For a proof

of this, see Appendix (3)). Since
√

3(n2 − 4) is equal to
4An

n
which is rational, this means√

3(n2 − 4) not irrational and hence must be an an integer. Suppose
√

3(n2 − 4) = k for
some positive integer k. Then 3(n2 − 4) = k2, so k2 is a multiple of 3. Since 3 is prime, k

must be a multiple of 3, so
k

3
is an integer and

n2 − 4

3
=
k2

9
=

(
k

3

)2

.

Thus,
n2 − 4

3
is a perfect square which proves (i).

Since
n2 − 4

3
is an integer, n2− 4 is a multiple of 3. If n2 were a multiple of 3, then n2− 3

would be a multiple of 3, but n2 − 3 and n2 − 4 are consecutive integers, so they cannot
both be multiples of 3. Thus, n2 is not a multiple of 3, so n is not a multiple of 3. This
proves (ii).

To see that n must be even, we can again set k to be an integer such that 3(n2 − 4) = k2

which means An =
kn

4
. If n is odd, then so are n2 and n2−4. This means k2 = 3(n2−4) is

odd, which means k is odd. If n and k are both odd, then An =
kn

4
cannot be an integer.

Therefore, n is not odd, and hence must be even. This proves (iii).

(c) By part (b), if n is remarkable, then it is even and is not a multiple of 3. The table below
contains each integer n ≤ 100 that is neither odd nor a multiple of 3, along with the

corresponding value of
n2 − 4

3
:

n n2−4
3

n n2−4
3

n n2−4
3

4 4 38 480 70 1632
8 20 40 532 74 1824
10 32 44 644 76 1924
14 64 46 704 80 2132
16 84 50 832 82 2240
20 132 52 900 86 2464
22 160 56 1044 88 2580
26 224 58 1120 92 2820
28 260 62 1280 94 2944
32 340 64 1364 98 3200
34 384 68 1540 100 3332

Again by part (b), if n is remarkable, then
n2 − 4

3
must be a perfect square. The only

values of n in the table above for which
n2 − 4

3
is a perfect square are n = 4, n = 14,

and n = 52, so these are the only possibilities for remarkable integers less than or equal to



100. Since the problem states that there are three remarkable integers less than or equal
to 100, the integers n = 4, n = 14, and n = 52 must be remarkable. For completeness, we
compute the values of A4, A14, and A52 to verify that they are integers:

A4 =
4

4

√
3(42 − 3)

= 6

A14 =
14

4

√
3(142 − 4)

= 84

A52 =
52

4

√
3(522 − 4)

= 1170.

(d) As suggested in the hint, we will try to find a polynomial function f(n) of degree 2 with
the desired property.

The first six remarkable integers are 4, 14, 52, 194, 724, and 2702. Squaring the first three,
we get 42 = 16, 142 = 196, and 522 = 2704. Subtracting 2 from these values gives 14,
194, and 2702, which are all remarkable integers. From this, we guess that the polynomial
function f(n) = n2− 2 has the property that if n is a remarkable integer, then f(n) is also
a remarkable integer. Before verifying that this is true, we test the guess with n = 194, in
which case f(n) = 1942 − 2 = 37 634. Indeed, with n = 37 634, we have

An =
37 634

4

√
3(37 6342 − 4)

= 613 283 664

which is large, but it is an integer. We will now show that if n is remarkable, then f(n) is
remarkable. By the definition of remarkable, we must show that if An is an integer, then
An2−2 is an integer. Suppose n is remarkable. By part (b), n is even and there is some k
for which n2 − 4 = 3k2. By the formula for An, we have

An2−2 =
n2 − 2

4

√
3
(
(n2 − 2)2 − 4

)
=
n2 − 2

4

√
3(n4 − 4n2)

=
n2 − 2

4

√
3n2(3k2)

=
3nk(n2 − 2)

4
(since n, k > 0)

which is an integer since both n and n2 − 2 are even. This proves our claim that if n is
remarkable, then f(n) = n2 − 2 is remarkable.

To exhibit infinitely many remarkable integers, we need only observe that when n > 2,
n2 − 2 > n. To see this, note that n2 − n− 2 = (n− 2)(n+ 1) has roots −1 and 2. Since
n2 − n− 2 is a quadratic with a positive leading coefficient, n2 − n− 2 > 0 for all n > 2,
which can be rearranged to n2 − 2 > n for all n > 2. Thus, starting at any remarkable



integer greater than 2 (which they all are), the sequence n, f(n), f(f(n)), f(f(f(n))), . . .
is an infinite sequence of remarkable integers. Starting with n = 4 gives the sequence

4, 14, 194, 37 634, 1 416 317 954, . . . .

As a final observation, we notice that the infinite sequence above starting with 4 does
not contain all remarkable integers. We can see immediately that n = 52, n = 724, and
n = 2702 are missing. In part (e), we will explain how to find all remarkable integers.

(e) Appendix (5) contains a potentially interesting approach to finding all of the remarkable
integers, but we give no proof that it works. What follows is an algebraic argument
that relates the set of remarkable integers to the set of integer solutions to the equation
x2 − 3y2 = 1, which is often called Pell’s equation.

We first prove that n ≥ 3 is remarkable if and only if there is a positive integer k for which
n2 − 3k2 = 4. In part (b), we showed that if n is remarkable, then n2 − 4 = 3k2 for some
k. Furthermore, n ≥ 3, so k is nonzero and hence can be taken to be positive. We need to
prove that if n2 − 4 = 3k2 for some positive integer k, then n is remarkable.

Note that if r is any odd integer, then r2 is one more than a multiple of 4. (We will use
this fact below.) To see this, observe that we must have r = 2t+ 1 for some integer t and
hence r2 = 4t2 + 4t+ 1 = 4(t2 + t) + 1.

Suppose that n2 − 4 = 3k2 for some positive integer k. We will prove that k and n are
both even. We rewrite the equation as n2 = 3k2 + 4 and investigate what happens if k is
odd. If k is odd, then n2 = 3k2 + 4 is odd, so n is odd. From the fact above, this means
there are integers u and v so that n2 = 4u + 1 and k2 = 4v + 1. Substituting this into
n2 = 3k2 + 4 gives 4u + 1 = 3(4v + 1) + 4 which can be rearranged to 4(u− 3v − 1) = 2.
However, since u− 3v − 1 is an integer, this says that 4 is a factor of 2, which is not true.
Therefore k cannot be odd and hence must be even. This implies n2 = 3k2 +4 is also even,
so n is even as well.

Computing An using n2 − 4 = 3k2, we have

An =
n

4

√
3(n2 − 4) =

n

4

√
32k2 =

3nk

4

which is an integer since both n and k are even.

Thus, we can find all remarkable integers n by finding all n for which there exists a positive
integer k satisfying n2 − 4 = 3k2 or n2 − 3k2 = 4. We just argued that for this equation

to hold, both n and k must be even. If we set a =
n

2
and b =

k

2
, the equation becomes

a2 − 3b2 = 1. We now have that the remarkable integers n are exactly the integers n = 2a
where a and b are positive integers satisfying a2 − 3b2 = 1.

Now what remains is solving Pell’s equation: x2 − 3y2 = 1. More specifically, we want to
find all pairs of nonnegative integers (x, y) = (a, b) satisfying x2 − 3y2 = 1. It is easily
checked that (x, y) = (1, 0) is the only solution to Pell’s equation where one of the variables
is 0. All other solutions have both a and b positive.

For any nonnegative integer m, define am and bm to be the unique integers satisfying
am + bm

√
3 = (2+

√
3)m. In practice, am and bm can be found by expanding and collecting

like terms. We will show that the solutions to Pell’s equation are exactly the pairs (am, bm).

Keep in mind that when m = 0, we have (2 +
√

3)0 = 1, so a0 = 1 and b0 = 0, which
indeed gives a solution as observed earlier. For the exponents m = 1, m = 2, and m = 3,



we get (2 +
√

3)1 = 2 +
√

3, (2 +
√

3)2 = 7 + 4
√

3, and (2 +
√

3)3 = 26 + 15
√

3. Thus,
(a1, b1) = (2, 1), (a2, b2) = (7, 4), and (a3, b3) = (26, 15). Notice that 22 − 3(12) = 1,
72 − 3(42) = 1, and 262 − 3(152) = 1. (As well, it is worth noting that the quantities
2 × a1 = 2 × 2 = 4, 2 × a2 = 2 × 7 = 14, and 2 × a3 = 2 × 26 = 52 are the first three
remarkable integers.)

The rest of the solution is devoted to proving the following claims:

• (am, bm) is a solution to Pell’s equation for all m ≥ 0.

• If (a, b) is a solution to Pell’s equation, then a = am and b = bm for some m ≥ 0.

For the first point, the critical observation is that (2−
√

3)m = am− bm
√

3 for all m. This
can be easily checked for a few small m. For a complete proof, see Appendix (4).

Next, factor the right side of 22 − 3 = 1 to get (2 +
√

3)(2−
√

3) = 1. Taking mth powers
of both sides and using exponent laws, we get

1 = 1m = [(2 +
√

3)(2−
√

3)]m

= (2 +
√

3)m(2−
√

3)m

= (am + bm
√

3)(am − bm
√

3)

= a2m − 3b2m

which proves that (am, bm) is a solution for each m.

For the second point, we first establish some terminology. Suppose (u1, v1) and (u2, v2) are
both solutions. We say that (u1, v1) is smaller than (u2, v2) if v1 < v2. As it turns out,
if v1 < v2 then u1 < u2 as well, but this fact will not be used. It was mentioned earlier
that (1, 0) is the only solution with a 0 in the second coordinate, so this means (1, 0) is
the unique smallest solution with respect to this notion of size.

Suppose (a, b) is a solution with b > 0. We will show that 2a− 3b > 0 and b > 2b− a ≥ 0.

To do this, first divide a2 = 1 + 3b2 by b2 to get
(a
b

)2
=

1

b2
+ 3. Since b is a positive

integer, it is at least 1, so 0 <
1

b2
≤ 1 which implies 3 <

(a
b

)2
≤ 4. Taking square roots,

we get
√

3 <
a

b
≤ 2 and since

√
3 ≈ 1.732 > 1.5, we have

3

2
<
a

b
≤ 2. The two inequalities

rearrange to 2a − 3b > 0 and 2b − a ≥ 0. Again from the observation that
a

b
>
√

3, we

have that a > b, which implies −b > −a, and adding 2b to both sides gives b > 2b − a.
Thus, 2a− 3b > 0 and b > 2b− a ≥ 2 as claimed.

Suppose again that (a, b) is a solution with b > 0. Consider

(a+ b
√

3)(2−
√

3) = (2a− 3b) + (2b− a)
√

3.

If we set a′ = 2a− 3b and b′ = 2b− a, then a′ > 0 and b′ ≥ 0 from the observations above,
and

(a′)2 − 3(b′)2 = (2a− 3b)2 − 3(2b− a)2

= 4a2 − 12ab+ 9b2 − 3(4b2 − 4ab+ a2)

= 4a2 − 12ab+ 9b2 − 12b2 + 12ab− 3a2

= a2 − 3b2

= 1



so (a′, b′) is a solution as well. Furthermore, b > b′ as observed earlier, so (a′, b′) is a smaller
solution than (a, b).

We have shown that if (a, b) is a solution with b positive, then multiplying (a + b
√

3) by
(2 −

√
3) and collecting like terms gives a smaller solution. In this smaller solution, the

value of y will be nonnegative. If it is positive, we can again multiply by 2 −
√

3 to get
an even smaller solution. Continuing, this can be repeated as long as the resulting y-value
is positive to get smaller and smaller solutions. Since the y-values are decreasing and
the process can be continued as long as the y-value is positive, we must eventually have
that (a + b

√
3)(2 −

√
3)m gives the smallest solution. In other words, we eventually get

(a+ b
√

3)(2−
√

3)m = 1 + 0
√

3 = 1. Multiplying both sides by (2 +
√

3)m, we get

(a+ b
√

3)(2−
√

3)m(2 +
√

3)m = (2 +
√

3)m

and since (2−
√

3)m(2 +
√

3)m = [(2−
√

3)(2 +
√

3)]m = 1 and (2 +
√

3)m = am + bm
√

3 by
definition, we have a+ b

√
3 = am + bm

√
3, so a = am and b = bm. This proves the second

claim.

Putting this all together, we have proved the desired result:

If c1, c2, c3, . . . , cm, . . . is the complete list of remarkable integers, in increasing order, then
cm = 2am where am is the “integer part” of (2 +

√
3)m as defined above.

Note: You may have observed that the cm satisfy the recurrence cm+2 = 4cm+1−cm for all
m ≥ 1. It is not too difficult to prove this using the description in the previous paragraph.

With c1 = 4 and c2 = 14, this recurrence gives

c3 = 4c2 − c1
= 4(14)− 4

= 52

c4 = 4c3 − c2
= 194

c5 = 724

c6 = 2702

c7 = 10 084

and so on.

One final interesting observation is that for all m ≥ 1 we have

cm = (2 +
√

3)m + (2−
√

3)m,

This is also not too hard to justify using earlier observations. Since 0 < 2−
√

3 < 1, this
means for “large” m, cm ≈ (2 +

√
3)m. You might want to explore this with a calculator.

Appendix to Solution

1. (Converse of the Pythagorean Theorem) The Pythagorean Theorem is typically phrased
in a way similar to “if a and b are the lengths of the legs in a right triangle and c is the
length of its hypotenuse, then a2 + b2 = c2.”. The converse of the Pythagorean theorem
says that if a, b, and c are real numbers satisfying a2 + b2 = c2, then the triangle with side
lengths a, b, and c is right-angled with a and b the lengths of the legs and c the length of
the hypotenuse. It is not difficult to find proofs of this fact online.



2. (Derivation of formula for An using trigonometry) For the other derivation of this formula,
we first let θ be the angle opposite the side of length n + 1. By the Law of Cosines, we
have

(n+ 1)2 = n2 + (n− 1)2 − 2n(n− 1) cos θ

which leads to

cos θ =
n2 − 4n

2n(n− 1)
=

n− 4

2(n− 1)
.

By the Pythagorean identity, cos2 θ + sin2 θ = 1. As well, θ is an angle in a triangle, so
sin θ is positive. Therefore,

sin θ =

√
1−

(
n− 4

2n− 2

)2

=

√(
2n− 2

2(n− 1)

)2

−
(

n− 4

2(n− 1)

)2

=
1

2(n− 1)

√
4n2 − 8n+ 4− n2 + 8n− 16

=
1

2(n− 1)

√
3n2 − 12

=
1

2(n− 1)

√
3(n2 − 4)

The area of a triangle with sides a and b meeting at angle θ is equal to
1

2
ab sin θ. Using

this and the result of the calculation above, we get

An =
1

2
n(n− 1) sin θ

=
1

2
n(n− 1)

1

2(n− 1)

√
3(n2 − 4)

=
n

4

√
3(n2 − 4).

3. (Square root of an integer is an integer or irrational) To prove that the square root of a
positive integer must be an integer or irrational, we assume that N is a positive integer
with

√
N rational and prove that

√
N must be an integer. Hence, assume m and n are

integers with
m2

n2
= N . We can assume that

m

n
is in lowest terms. Since

m2

n2
is an integer,

m2 must be a multiple of n2, which means any prime factor of n2 is also a prime factor of
m2. If n has a prime factor p, then p is a factor of m2, so p is also a factor of m. We have

assumed
m

n
is in lowest terms, so we are forced to conclude that n has no prime factor.

This means n± 1 so
m

n
= ±m. Therefore,

√
N is an integer.

4. ((2 −
√

3)m = am − bm
√

3) This argument assumes a knowledge of the binomial theorem
and of binomial coefficients. To establish that (2 −

√
3)m = am − bm

√
3, we will use the



binomial theorem. First, observe that

(2 +
√

3)m =
m∑
k=0

(
m

k

)
2m−k

√
3
k

=
∑

0≤k≤m
k even

(
m

k

)
2m−k

√
3
k

+
∑

0≤k≤m
k odd

(
m

k

)
2m−k

√
3
√

3
k−1

=
∑

0≤k≤m
k even

(
m

k

)
2m−k3

k
2 +

∑
0≤k≤m
k odd

(
m

k

)
2m−k(

√
3)3

k−1
2

=
∑

0≤k≤m
k even

(
m

k

)
2m−k3

k
2 +
√

3
∑

0≤k≤m
k odd

(
m

k

)
2m−k3

k−1
2

and so we see that

am =
∑

0≤k≤m
k even

(
m

k

)
2m−k3

k
2

and

bm =
∑

0≤k≤m
k odd

(
m

k

)
2m−k3

k−1
2

In a similar way, we can compute (2−
√

3)m to get

(2−
√

3)m =
m∑
k=0

(
m

k

)
2m−k(−

√
3)k

=
∑

0≤k≤m
k even

(
m

k

)
2m−k(−

√
3)k +

∑
0≤k≤m
k odd

(
m

k

)
2m−k(−

√
3)(−

√
3)k−1

=
∑

0≤k≤m
k even

(
m

k

)
2m−k3

k
2 +

∑
0≤k≤m
k odd

(
m

k

)
2m−k(−

√
3)3

k−1
2

=
∑

0≤k≤m
k even

(
m

k

)
2m−k3

k
2 −
√

3
∑

0≤k≤m
k odd

(
m

k

)
2m−k3

k−1
2

= am −
√

3bm.

5. (Different approach to finding all remarkable integers) Below are the values of An for n = 4,
n = 14, n = 52, n = 194, n = 724, and n = 2702.

A4 = 6

A14 = 84

A52 = 1170

A194 = 16 296

A724 = 226 974

A2702 = 3 161 340



There may not appear to be a pattern here, but consider the ratios below:

A14

A4

= 14

A52

A14

≈ 13.92857142857142

A194

A52

≈ 13.92820512820512

A724

A194

≈ 13.92820324005891

A2702

A724

≈ 13.92820323032594

and so it appears that the sequence of integer areas is very close to being geometric with
a ratio around 13.92820323032594. In fact, the quantity these ratios are approaching is
(2 +

√
3)2 = 13.9282032302755 . . . . Try to verify this using the result at the very end of

the solution to part (e)!

Using this apparent pattern, if we suppose N is the next remarkable integer after 2702, then

we expect
AN

A2702

≈ 13.9282032302755. Indeed, if we multiply A2702 by 13.928203230275509,

we get 44031785.99999918 . . . , which is extremely close to the integer 44 031 786. Thus,
we guess that AN = 44 031 786, which would mean that

N

4

√
3(N2 − 4) = 44 031 786.

Multiplying by 4, squaring both sides, then dividing by 3 gives

N2(N2 − 4) = 10 340 256 951 198 912

which can be rearranged to

N4 − 4N2 − 10 340 256 951 198 912 = 0

which is a quadratic in N2. Using a calculator (or a lot of paper on a rainy afternoon), we
can use the quadratic formula to get

N2 =
4±
√

16 + 4× 10 340 256 951 198 912

2
= 2± 101 687 054

which means N2 = 101 687 056 and so N = 10 084. Indeed, 10 084 is the next remarkable
integer after 2702. Repeating this (rather impractical) process will indeed find all n for
which An is an integer, provided one possesses arbitrarily good rational approximations of
(2 +

√
3)2.



Problem of the Month
Problem 6: March 2021

Problem

Here is a simple activity that leads to an interesting math problem.

• For a positive integer n > 1, draw n dots on a piece of paper. Draw a line to connect each
pair of dots. The lines do not need to be straight, but should be drawn so that they do not
pass through any dots other than the two they connect. If two lines intersect, the intersection
does not define a new dot.

• Colour each dot either red or blue in any way that you like.

• Colour each line as follows: If the line connects two dots of the same colour, colour the line
red. Otherwise, colour the line blue.

Call a colouring of the dots balanced if it leads to the lines being coloured so that there is the same
number of blue lines as red lines.

(a) Show that there is no balanced colouring when n = 5.

(b) Show that there is a balanced colouring when n = 9. Find all possibilities for the number of
red dots in a balanced colouring when n = 9.

(c) Determine all n for which there is a balanced colouring. For each such n, determine all
possibilities for the number of red dots in a balanced colouring.

For part (d), the dots can now be coloured red, blue, or green. The table below describes how
the lines should be coloured once the dots are coloured. For example, the letter R is in the cell
corresponding to the row for B and the column for G. This means that if a line connects one blue
dot and one green dot, then it is to be coloured red.

R G B
R R G B
G G B R
B B R G

For part (d), we redefine a balanced colouring of the dots to mean a colouring leads to equal
numbers of red, blue, and green lines.

(d) Describe all n for which there is a balanced colouring.



Hint

In all three parts, it is useful to introduce a variable for the number of dots of each colour. For
example, you might set r to be the number of red dots and b to be the number of blue dots.

(a) Express the number of blue lines in terms of r and b.

(b)/(c) Determine expressions for the number of red lines and blue lines and set them equal to each
other.

(d) An approach similar the one suggested for parts (b) and (c) should work here. There should
be a new variable for the number of green dots and there will now be three quantities that
must be equal to each other.



Problem of the Month
Solution to Problem 6: March 2021

(a) Since there are 5 dots, each dot is connected to 5 − 1 = 4 dots. This gives a total of
5× 4

2
= 10 lines where the division by 2 is because the product 5 × 4 counts each line

twice.

Suppose r is the number of red dots and b is the number of blue dots. Since n = 5 and
every dot must be coloured, r + b = 5. Only the lines connecting a blue dot to a red dot
are coloured blue, and since each blue dot is connected to each red dot, there are exactly

rb blue lines. If a colouring is balanced, then the number of blue lines would be
10

2
= 5.

Thus, if the colouring is balanced, then rb = 5. Since r and b are nonnegative integers,
this means r = 1 and b = 5 or r = 5 and b = 1. In each case, r + b 6= 5, so there can be
no balanced colouring when n = 5.

(b) Similar to the argument in part (a), the number of lines when n = 9 is
9× 8

2
= 36. As

well, if we let r be the number of red dots and b be the number of blue dots, then the
number of blue lines is rb. For a colouring to be balanced, we need rb = 18. Therefore, we
are looking for nonnegative integers r and b such that rb = 18 and r + b = 9.

Since rb = 18 and both r and b are nonzero, we have b =
18

r
. Substituting this expression

into r+b = 9 gives r+
18

r
= 9. Multiplying through by r and rearranging gives r2−9r+18 =

0, which can be factored to get (r− 6)(r− 3) = 0. Therefore, the number of red dots must
be either 3 or 6.

If r = 3, then b = 9 − 3 = 6, so the number of blue lines is 3 × 6 = 18. This means the
number of red lines is 36 − 18 = 18. If r = 6, then b = 9 − 6 = 3, so the number of blue
lines is 6× 3 = 18 and the number of red lines is 36− 18 = 18 as well.

Thus, colouring the dots so that 3 are red or 6 are red gives a balanced colouring, and
there are no other possibilities.

(c) When there are n dots, there are
n(n− 1)

2
lines. Once again, we set r to be the number

of red dots and b to be the number of blue dots, so that rb =
1

2
× n(n− 1)

2
=

n(n− 1)

4
is

the number of blue lines in a balanced colouring.

Therefore, we wish to find all integers n > 1 for which there are nonnegative integers r

and b satisfying r + b = n and rb =
n(n− 1)

4
.

By squaring both sides of the equation r+b = n, we obtain r2 +2rb+b2 = n2. Multiplying

both sides of the equation rb =
n(n− 1)

4
by 4 gives 4rb = n2−n. Subtracting this equation

from r2 + 2rb + b2 = n2 gives r2 − 2rb + b2 = n which factors as (r − b)2 = n. Therefore,
if there is a balanced colouring, then n must be a perfect square.

To finish the argument, we will show that if n is a perfect square, then there is a balanced



colouring. To get an idea how to do this, let us suppose n = m2 for some positive integer
m. We know that if a balanced colouring exists, then (r − b)2 = m2. If r > b, then

r− b = m. Adding this to r+ b = n and dividing by 2, we have r =
n + m

2
. It then follows

that b =
n−m

2
. If r < b, we get that r =

n−m

2
and b =

n + m

2
. This shows that if a

balanced colouring exists, then we must have that r =
n±
√
n

2
.

If n is a perfect square, then we can let r =
n +
√
n

2
and b =

n−
√
n

2
which gives

rb =
n2 −

√
n
2

4
=

1

2
× n2 − n

2

and so the colouring is balanced. A nearly identical calculation shows that we can let

r =
n−
√
n

2
and b =

n +
√
n

2
and we would also get a balanced colouring.

Therefore, there is a balanced colouring exactly when n is a perfect square. Moreover, if
n is a perfect square, then the number of red dots in a balanced colouring must be either
n +
√
n

2
or

n−
√
n

2
. We point out that when n is a perfect square, n and

√
n are either

both even or both odd. This means the numerators n +
√
n and n−

√
n are even, so the

numbers of red dots given above are both integers.

(d) Suppose r is the number of red dots, b is the number of blue dots, and g is the number of

green dots. The number of lines is
n(n− 1)

2
, so in a balanced colouring, we need to have

n(n− 1)

6
lines of each colour.

The lines that are coloured red are the lines connecting two red dots or the lines connecting

a blue dot to a green dot. The number of lines connecting red dots to red dots is
r(r − 1)

2
.

This is because each of the r red dots is connected to the r− 1 other red dots, so r(r− 1)
counts each such line twice. The number of lines connecting blue dots to green dots is bg.
Therefore, the number of red lines is

r(r − 1)

2
+ bg

Similar reasoning shows that the number of blue lines is

g(g − 1)

2
+ rb

and that the number of green lines is

b(b− 1)

2
+ rg.

Suppose the numbers of red lines, blue lines, and green lines are all equal. In particular,
the number of red lines equals the number of blue lines, so

r(r − 1)

2
+ bg =

g(g − 1)

2
+ rb.



Multiplying this equation by 2 and expanding gives r2−r+2bg = g2−g+2rb. Rearranging
this, we get

(r2 − g2) + (g − r) + (2bg − 2rb) = 0

which has a common factor of r − g and can be rewritten as

(r − g)(r + g − 1− 2b) = 0. (1)

Similarly, the number of blue lines equals the number of green lines, so

g(g − 1)

2
+ rb =

b(b− 1)

2
+ rg

which is equivalent to
g2 − b2 + b− g + 2rb− 2rg = 0

and then factored as
(g − b)(g + b− 1− 2r) = 0. (2)

Equating the number of red lines and the number of green lines gives

r(r − 1)

2
+ bg =

b(b− 1)

2
+ rg,

which is equivalent to
(r − b)(r + b− 1− 2g) = 0. (3)

Suppose r, b, and g are three distinct integers. This means r − g 6= 0, so Equation (1)
implies r + g − 1 − 2b = 0 or r + g = 1 + 2b. Similarly, g − b 6= 0 and r − b 6= 0, so
Equations (2) and (3) imply b+ g = 1 + 2r and r + b = 1 + 2g, respectively. Adding these
three equations, we get

(r + g) + (b + g) + (r + b) = (1 + 2b) + (1 + 2r) + (1 + 2g)

which implies 2(r + b + g) = 3 + 2(r + b + g) so 3 = 0. Of course, this is not true, which
means r, b, and g cannot be three distinct integers. In other words, at least two of r, b,
and g are equal to each other.

One way for Equations (1), (2), and (3) to be satisfied simultaneously is when r = b = g.
This implies that there is some positive integer k with n = 3k and r = b = g = k.

Otherwise, there are three possibilities: r = b with g different from r and b, r = g with b
different from r and g, and b = g with r different from b and g.

If r = b and g is different from r and b, then r 6= g, so Equation (1) implies r+g−1−2b = 0.
Substituting r = b, we get g − 1− b = 0 or g = 1 + b. This shows that g is one more than
the common value of r and b. Thus, there is some positive integer k so that n = 3k + 1
and r = b = k and g = k + 1.

Similar analysis shows that if r = g with b different from r and b, then n = 3k+1 for some
positive integer k and r = g = k with b = k + 1. As well, if b = g and r is different form b
and g, then n = 3k + 1 with b = g = k and r = k + 1.

We have now argued that if there is a balanced colouring of n dots, then one of these two
statements must be true:

• n = 3k for some positive integer k and there are k dots of each colour.



• n = 3k + 1 for some positive integer k and (r, b, g) is one of (k, k, k + 1), (k, k + 1, k),
and (k + 1, k, k).

To finish the solution, we will check that the colouring is indeed balanced in each of the
four situations described.

If n = 3k for some positive integer k and r = b = g = k, then the number of red lines is

k(k − 1)

2
+ k2 =

k2 − k

2
+ k2

=
3k2 − k

2

=
9k2 − 3k

6

=
3k(3k − 1)

6

=
n(n− 1)

6
.

A similar calculation shows that there are the same number of blue and green lines. There-
fore, there is a balanced colouring when n = 3k for some positive integer k.

If n = 3k + 1 for some positive integer k and r = b = k with g = k + 1, then the number
of red lines is

k(k − 1)

2
+ k(k + 1) =

k2 − k + 2k2 + 2k

2

=
3k2 + k

2

=
9k2 + 3k

6

=
3k(3k + 1)

6

=
(n− 1)n

6
.

The number of green lines is also
n(n− 1)

6
by essentially an identical calculation, and the

number of blue lines is

(k + 1)k

2
+ k2 =

3k2 + k

2

=
n(n− 1)

6

by another similar calculation. The situations when r = g = k and b = k+1 and b = g = k
and r = k + 1 can be handled similarly.

We have now shown that when n = 3k or n = 3k + 1, there is a balanced colouring.
Therefore, a balanced colouring exists exactly when n = 3k or n = 3k+1 for some positive
integer k.



Further Remark

If you are familiar with modular arithmetic, then you might have noticed a pattern in the
rules for colouring the lines. In the first three parts, we could have said that each point is
“coloured” by either 0 or 1, and the colour of a line is the sum modulo 2 of the “colours”
of the dots it connects. “Modulo 2” means the remainder after division by 2. So in this
system of arithmetic, 0 + 0 = 0, 0 + 1 = 1 + 0 = 1, and 1 + 1 = 0 since the remainder
after dividing 2 by 2 is 0. In our problem, red corresponds to 0 and blue corresponds to 1.
Similarly, in part (d) we might instead label each dot by 0, 1, or 2 (red is 0, blue is 1, and
green is 2). The label is the sum modulo 3, the remainder after division by 3. This means
0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 0 + 2 = 2 + 0 = 2, 1 + 2 = 2 + 1 = 0 (since the remainder
after dividing 3 by 3 is 0), and 2 + 2 = 1 (since the remainder after dividing 4 by 3 is 1).

With this in mind, we can imagine labelling the dots by the integers 0, 1, 2, or 3 and
labelling the lines by the sum modulo 4, or even more generally, we could label dots label
by 0, 1, 2, 3, and so on up to n− 1 and label the lines by the sum modulo n. What should
the definition of “balanced” be in general, and what can you say about balanced colourings
in general?



Problem of the Month
Problem 7: April 2021

Problem

For an integer n ≥ 3, n2 points form an n× n square grid.

Define P (n) to be the probability that three distinct points randomly selected from the grid are
the vertices of a triangle with positive area. Also define f(n) to be the number of sets of three
distinct points from the grid that lie on a common line. We can think of f(n) as the number of
sets of three distinct points from the grid that are the vertices of a triangle with area 0.

For instance, with n = 3, it can be shown that there are 84 possible ways to select three distinct
points, that 8 of the sets of three points lie on a line, and that 76 of the sets of three points form

the vertices of a triangle with positive area. Thus, f(3) = 8 and P (3) =
76

84
=

19

21
.

The goal of this problem is to estimate P (n) for large n. The approach outlined will be to estimate
f(n) and use it to estimate P (n).

(a) When n = 3, f(n) = 8 and P (3) =
19

21
. Compute f(n) and P (n) for n = 4 and n = 5.

(b) For n ≥ 3, prove that f(n+1) < f(n)+5n4+5n3+5n2+5n. This will allow us to understand
how quickly f(n) grows which will help to estimate P (n).

(c) Using part (b), prove that f(n) < n5 for all n ≥ 3.

(d) Prove that there is a constant c with the property that P (n) > 1− c

n
for all n ≥ 3. Use this

to explain why the following statement makes sense: “For very large n, it is nearly certain
that three points selected randomly from an n×n grid will be the vertices of a triangle with
positive area.”

As indicated in part (d), this problem is meant to examine what happens to P (n) as n gets large.
Since it seems very difficult to calculate f(n) (and hence, P (n)) directly for large n, we instead
estimate its value. As long as we carefully keep track of how good/bad the estimates can be, we
can say something meaningful about P (n) for large n without actually computing it directly. Very
frequently, mathematicians use estimates like these when exact answers are difficult or impossible
to obtain. These estimates are often as useful as exact answers.



Hint

(a) Drawing a picture (or a few pictures) could be helpful. Most of the work is in computing f(n).
One way to do this is to consider the various slopes that a line through three points in the grid
can have. It might also be useful to do an internet search on binomial coefficients. A binomial

coefficient, sometimes denoted

(
n

k

)
(read “n choose k”), is equal to the number of ways to

choose k objects from a set of n distinct objects. It can be computed as

(
n

k

)
=

n!

k!(n− k)!
.

(b) Consider breaking an (n + 1) × (n + 1) grid into two sets of points: the bottom-left n × n
subgrid and the 2n + 1 points along the top and right. If three points lie on a line, how can
they be distributed among these two sets? Remember, the goal is not to compute f(n + 1)
exactly, but to bound it by f(n) + 5n4 + 5n3 + 5n2 + 5n. In fact, you might be able to do
better than this by showing, for example, that f(n + 1) < f(n) + 2n4 + 2n3 + 2n2 + 2n, or
some other bound involving f(n).

(c) Expand (n + 1)5.

(d) Use part (c). There are many values of c that will work. It will likely be helpful to show

some other inequalities like n2 − 1 ≤ 1

2
n2 for n ≥ 3.



Problem of the Month
Solution to Problem 7: April 2021

As suggested in the hint, will use binomial coefficients throughout this solution. The symbol(
m

k

)
(in words, “m choose k”) represents the number of ways to choose k objects from m

distinct objects. We will use explicitly that

(
m

2

)
=

m(m− 1)

2
and

(
m

3

)
=

m(m− 1)(m− 2)

6
,

but you may wish to explore this standard notation more generally.

We will also use the standard terminology that three points are collinear if they are on a common
line.

(a) Although it was not part of the problem, we will show that f(3) = 76 and P (3) =
19

21
.

Consider the 3 × 3 grid below:

We can draw three vertical lines and three horizontal lines such that each line passes
through exactly three points. This accounts for a total of 6 ways to choose three distinct
collinear points from the grid.

If three points are collinear but the line they define is neither vertical nor horizontal, then
each point must be in a different row and a different column. The only sets of three
collinear points with one point in each row and each column are the two “diagonals”. This
gives two more sets of three points, for a total of 8. Thus, f(3) = 8. The diagram below
shows all eight of the lines that contain three points:

To compute P (3), we will need the total number of ways to choose three distinct points

from the 3 × 3 = 9 points in the grid. This is equal to

(
9

3

)
=

9 × 8 × 7

6
= 84.

There are 84 ways to choose three distinct points, and there are f(3) = 8 ways to choose
three distinct points that are collinear. Each of the remaining 84 − 8 = 76 sets of three

distinct points are the vertices of a triangle of positive area, so P (3) =
76

84
=

19

21
.

To compute P (4), we will compute f(4) and use that the number of ways to choose three

distinct points from the 4×4 = 16 points in the grid is

(
16

3

)
= 560. Then we can compute



P (4) =
560 − f(4)

560
.

To count the sets of three collinear points, we will first find all lines that pass through at
least two of the points. To make sure we do not miss any, we will examine the possible
slopes of lines through at least two points, imagining that the bottom-left point is at the
origin and the others are the points (a, b) where 0 ≤ a ≤ 3 and 0 ≤ b ≤ 3. If two points are

chosen, then the slope can be computed as
“rise”

“run”
. Ignoring vertical and horizontal lines

for now, the possible rises are −3, −2, −1, 1, 2, and 3 and the possible runs are the same
set of values. Thus, the possible slopes of lines that are neither vertical nor horizontal are

±3, ±2, ±3

2
, ±1, ±2

3
, ±1

2
, ±1

3

If a line that is neither horizontal nor vertical passes through three distinct points, then
these three points must be in three different rows and three different columns. Suppose
such a line has slope 3. Then the two points on this line that are farthest from each other
must be a vertical distance of at least 2 apart, and hence, must be a vertical distance of
at least 6 apart. There are only four rows of points, so it is impossible for a line of slope 3

to pass through three points in the grid. Similarly, a line of slope
1

3
cannot pass through

three points in the grid. The diagram below may help to illustrate this.

Similar arguments can be used to show that a line of any of the slopes above, except 1
and −1, can pass through at most two points in the grid. Thus, if a line passes through
three or more points in the grid, it must have slope ±1 or be horizontal or vertical. There
are six lines of slope ±1 that pass through at least three points: Two diagonals, one above
each diagonal, and one below each diagonal. They are shown below:

The four lines other than the diagonals each pass through exactly three points in the grid.
Thus, we get four sets of three collinear points.

Each diagonal passes through four points in the grid. From each such line, we can choose
a set of three collinear points by ignoring one of the four points. Thus, each of these
two lines contributes another four sets of three collinear points. So far, we have counted
4 + 4 + 4 = 12 sets of three collinear points in the grid.



Each horizontal line passes through four points. By the same reasoning as in the previous
paragraph, the horizontal lines each contribute four sets of three collinear points for a total
of 4×4 = 16 more sets of collinear points. We similarly get 16 sets of three collinear points
from the four vertical lines. In total, f(4) = 12 + 16 + 16 = 44. We can now compute P (4)
as

P (4) =
560 − f(4)

560
=

560 − 44

560
=

516

560
=

129

140
.

To compute f(5), we will again examine the possible slopes of lines through at least two
points in the grid. In a 5 × 5 grid, the possible rises of a line that is neither vertical nor
horizontal are 1, 2, 3, and 4, and the possible runs are the same. The possible slopes
coming from these rises and runs are

±4 ,±3 ,±2 ,±3

2
,±4

3
,±1 ,

3

4
,±2

3
,±1

2
,±1

3
,±1

4

Using reasoning similar to the case for n = 4, it can be shown that of the slopes listed

above, only a line with slope ±1, ±1

2
, or ±2 can pass through three points in a 5× 5 grid.

By examining the lines having these slopes, as well as the vertical and horizontal lines, we
can compute f(5).

There are five lines of slope 1 that pass through at least three points: a diagonal, two lines
above it, and two lines below it. These five lines are depicted below.

Of these five lines, there are two that pass through exactly three points in the grid. Thus,
each of these two lines contributes one set of three collinear points. As argued in the n = 4
case, the two lines through four points each contribute four sets of three collinear points.

The one line through five points contributes

(
5

3

)
= 10 sets of three collinear points. Thus,

from the lines of slope 1, we get a total of 1 + 1 + 4 + 4 + 10 = 20 sets of there collinear
points. Similar reasoning can be used to show that there are 20 sets of three collinear
points on the lines of slope −1.

The counts for each of the slopes ±1

2
and ±2 are essentially the same, so we will only

explicitly examine the case when the slope is 2.

Suppose points A, B, and C are three collinear points in the grid so that the slope of
the line through the points is 2. Also suppose that A and C are the two points that are
farthest apart. Since the line is neither horizontal nor vertical, A, B, and C are in different
columns and so the horizontal distance between A and C is at least 2. Since the slope
is 2, this means the vertical distance between A and C is at least 4. However, 4 is the
largest possible vertical distance between two points in the grid, so this means the vertical



distance between A and C is exactly 4. Therefore, one of A and C must be in the bottom
row. There are only five lines of slope 2 passing through one of the points in the bottom
row, and only three of them pass through at least three points in the grid. In fact, each
of these three lines passes through exactly three points in the grid, and they are depicted
below:

This means that we get an additional three sets of three collinear points from the lines of

slope 2. Similarly, we get three sets from the lines of slopes −2,
1

2
, and −1

2
.

Each vertical line and each horizontal line contains another

(
5

3

)
= 10 sets of three collinear

points, so we get another 10×10 = 100 sets of collinear points. Combining with the earlier
counts, have that f(5) = 20 + 20 + 4 × 3 + 100 = 152.

The total number of sets of three points in a 5 × 5 grid is

(
25

3

)
= 2300, so

P (5) =
2300 − 152

2300
=

2148

2300
=

537

575
.

(b) We can consider an (n + 1) × (n + 1) grid as an n× n grid with 2n + 1 additional points:

· · ·

... . .
.

...

· · ·

...

· · ·

We will denote by A the set of points in the highlighted n× n grid (the bottom left n× n
grid) and by B the remaining 2n + 1 points. Within B, we will refer to the n + 1 points
in the rightmost column as the “vertical part” and the n + 1 points in the top row as



the “horizontal part”. Note that the top right point is in both the vertical part and the
horizontal part of B.

There are four possibilities for a set of three collinear points in the (n + 1) × (n + 1) grid:
They are all in A, two are in A and one is in B, one is in A and two are in B, or they
are all in B. f(n + 1) is the sum of the number of sets of collinear points in each case.
Remember that our goal is not to compute f(n+1) precisely, but to show that it is smaller
than f(n) + 5n4 + 5n3 + 5n2 + 5n.

Case 1: All three points are in A. By the definition of f(n), there are exactly f(n) sets of
three collinear points in A.

Case 2: Two points are in A and one is in B. For any two points in A, the line defined
by the two points intersects B at most once in the vertical part and at most once in
the horizontal part. This means for any two distinct points in A, the line through them
intersects B at most twice in total. Thus, the number of sets of three collinear points in
this case is no more than two times the number of ways to choose two distinct points from

A. There are n2 points in A, so there are

(
n2

2

)
=

n2(n2 − 1)

2
pairs of distinct points in

A. In this case, there are at most 2 × n2(n2 − 1)

2
= n4 − n2 sets of three distinct points.

Case 3: One point is in A and two points are in B. The line defined by two points in the
horizontal part of B does not contain any points in A. Similarly, the line defined by any
two points in the vertical part of B does not contain any points in A. Therefore, for a set
of three collinear points to fall in this case, we must have one of the two points in B in the
vertical part and one of the two points in the horizontal part. Neither of these two points
can be the top-right point since this would make the line either vertical or horizontal.
Therefore, there are n×n possible ways to choose the two points from B. The line defined
by these two points may contain no points from A or could contain several. Since we do
not need to count precisely, it will be sufficient to observe that the line intersects each
column at most once. Thus, for any of the n2 pairs of points from B described above,
there are at most n points from A on that line. Therefore, there are at most n3 sets of
three collinear points in this case.

Case 4: All three points are in B. Since there are three points, either two of the points are
in the vertical part or two of the points are in the horizontal part. Two points define a
line, so this means the line must be either horizontal or vertical. Thus, in fact, either all
three points are in the vertical part or all three points are in the horizontal part.

There are n+ 1 points in the horizontal part and n+ 1 points in the vertical part (the top-

right point is in both parts). Thus, there are 2

(
n + 1

3

)
= 2

(n + 1)(n)(n− 1)

6
=

n3 − n

3
sets of three collinear points in this case.

We have shown that there are f(n) sets of three collinear points in Case 1 and that there

are
n3 − n

3
sets of three collinear points in Case 4. As well, we showed that there are at

most n4 − n2 sets of three collinear points in Case 2 and that there are at most n3 sets of
three collinear points in Case 3. In Cases 2 and 3, you might have noticed that we were
not very careful about our counting. For instance, in Case 3, it is not difficult to show that
the line defined by the two points in B intersects A at most n− 2 times (a better bound
than n) and in fact, likely intersects A even fewer times. However, these rather simple



bounds will be sufficient.

Putting the information from Cases 1 through 4 together, we have

f(n + 1) ≤ f(n) + (n4 − n2) + n3 +
n3 − n

3
= f(n) + n4 +

4

3
n3 − n2 − 1

3
n.

Since n is a positive integer, n4 < 5n4,
4

3
n3 < 5n3, −n2 < 5n2, and −1

3
n < 5n. We can

apply these four inequalities to get

f(n + 1) < f(n) + 5n4 + 5n3 + 5n2 + 5n.

Note: The last step in the solution to (b) might seem like a strange thing to do since we
already had a “better” bound on f(n+ 1). It might seem like we threw away information,
and in fact, we did. Roughly speaking, we have sacrificed some accuracy in order to get
an expression that will be easier to work with. In general, when mathematicians use this
kind of technique, it can be quite delicate trying to balance how much accuracy can be
sacrificed while making the quantities and expressions involved easy enough to manage. It
often involves going back to earlier parts of a solution several times to make an adjustment.
Indeed, when we were writing this problem, part (c) was the last to be finalized. This is
because, after writing a solution to part (d), we went back to adjust what we asked for in
part (c). You may be able to solve part (d) by using different versions of parts (b) and (c).

(c) Continuing with our estimation in part (b), we have for n ≥ 3 that 5n2 ≤ 10n2 and
5n3 ≤ 10n3. Thus, for all integers n ≥ 3, we actually have that

f(n + 1) < f(n) + 5n4 + 10n3 + 10n2 + 5n

< f(n) + 5n4 + 10n3 + 10n2 + 5n + 1

where the addition of 1 at the end will be used shortly.

Using the calculations in part (a), we get that f(3) = 8 < 243 = 35, f(4) = 44 < 1024 = 45,
and f(5) = 152 < 3125 = 55, so f(n) < n5 for each of n = 3, n = 4, and n = 5. We will
now use induction to prove that f(n) < n5 for all n ≥ 3.

To do this, we will assume that f(k) < k5 for some integer k ≥ 3 and from this deduce that
f(k+ 1) < (k+ 1)5. Expanding (k+ 1)5, we get (k+ 1)5 = k5 + 5k4 + 10k3 + 10k2 + 5k+ 1.
Thus, using the inequality above and the assumption that f(k) < k5, we have

f(k + 1) < f(k) + 5k4 + 10k3 + 10k2 + 5k + 1

< k5 + 5k4 + 10k3 + 10k2 + 5k + 1

= (k + 1)5

Therefore, if the statement “f(k) < k5” is true for some integer, then it is true for the
next integer. By the principle of mathematical induction, f(n) < n5 for all n ≥ 3.

Note: It might be a little clearer now why we used such a “weak” bound in part (b). The
calculation above was very easy because we bounded f(n + 1) by f(n) plus part of the
expression (n + 1)5.

(d) In an n×n grid, the number of ways to choose three points is

(
n2

3

)
=

n2(n2 − 1)(n2 − 2)

6
.

If we call this quantity g(n), then

P (n) =
g(n) − f(n)

g(n)
= 1 − f(n)

g(n)
= 1 − 6f(n)

n2(n2 − 1)(n2 − 2)
.



We will find a constant c so that

6f(n)

n2(n2 − 1)(n2 − 2)
<

c

n

and hence

− 6f(n)

n2(n2 − 1)(n2 − 2)
> − c

n

which will mean that

P (n) = 1 − 6f(n)

n2(n2 − 1)(n2 − 2)
> 1 − c

n

for n ≥ 3.

From part (c), we have that f(n) < n5 for all n ≥ 3, so we get

6f(n)

n2(n2 − 1)(n2 − 2)
<

6n5

n2(n2 − 1)(n2 − 2)
=

6n3

(n2 − 1)(n2 − 2)
. (∗)

Now notice that for n ≥ 3, we have n2 − 1 >
1

2
n2. To see this, observe that n2 > 2 when

n ≥ 3, so 2n2 − n2 > 2 which can be rearranged to 2n2 − 2 > n2. Multiplying through by
1

2
gives the result.

In a similar way, it can be argued that n2 − 2 >
1

2
n2 when n ≥ 3.

Since n2 − 1 >
1

2
n2 and n2 − 2 >

1

2
n2, we have

1

n2 − 1
<

2

n2
and

1

n2 − 2
<

2

n2
. Therefore,

6n3

(n2 − 1)(n2 − 2)
= 6n3 × 1

n2 − 1
× 1

n2 − 2

< 6n3 × 2

n2
× 2

n2

=
24

n

Combining this with (∗), we have

6f(n)

n2(n2 − 1)(n2 − 2)
<

24

n

for all n ≥ 3. Thus,

P (n) = 1 − 6f(n)

n2(n2 − 1)(n2 − 2)
> 1 − 24

n
.

This means we can take c = 24. In fact, any c larger than 24 will work.

Finally, we discuss what this means for large n. Suppose, for example, that n = 24 × 106.
Then the above inequality implies

P (n) > 1 − 24

24 × 106
= 0.999999.



So for this value of n, the probability that the three chosen points form a triangle of
positive area is at least 0.999999, which means it is very close to 1. As n gets even larger,

the quantity
24

n
gets even smaller, so P (n) is forced to be even closer to 1. While this

inequality never tells us the exact probability, it does give us a useful estimate.

It is worth pointing out that with n = 3, this inequality tells us that P (n) > 1 − 24

3
so P (n) > −7. This is true, but it isn’t very interesting since probabilities are always
positive. This is typical of the type of argument that we have used. The result – that P (n)
is very close to 1 when n is large – is not meant to enlighten us for small values of n. The
sacrifice of accuracy discussed at the end of the solution to (b) is apparent for small n, but
insignificant for large n, as long as all we need to know is that for large n, the probability
P (n) is very close to 1. Of course, if we wanted to know something else about P (n), this
estimate might not be as useful.

As you might expect, if we had been more careful with our estimates, we could have
obtained a result that says more about P (n) (and perhaps works better for some smaller
values of n). This would likely come with a harder proof. For example, do you think it

is possible to find a constant d so that P (n) > 1 − d

n2
for all sufficiently large n? If so,

it would give an even better understanding of how P (n) behaves for large n, but would
require much more careful estimates than those in part (b).



Problem of the Month
Problem 8: May 2021

Problem Try these three geometry problems! Problems (a), (b), and (c) are not intended to be
related to each other. In each part, a diagram is provided to give an example of a figure satisfying
the conditions to be explored in that part.

(a) In trapezoid ABCD, ∠BAD = 90◦ and BC is parallel to AD with BC < AD. The diagonals
AC and BD intersect at point X. A line parallel to AD is drawn through X and intersects
AB at L and CD and M . Determine the length of LM in terms of the lengths of BC and
AD.

A

B C

D

L M
X

(b) Suppose quadrilateral ABCD has no pair of parallel sides and is inscribed in a circle. AB
and DC are extended to meet at point E and AD and BC are extended to meet at point F .
The degree measures of ∠AFB, ∠AED, and ∠EAF form an increasing arithmetic sequence
in that order. The degree measure of each of these three angles is an integer. Find all possible
values of ∠AFB.

A

B
C

D

E

F

(c) Rectangle DBCA has E on BC and F on AC so that 4DEF is equilateral. Find all possible

values of
BD

AD
.

D

B C

A

E

F



Hint

(a) The assumption that ∠BAD = 90◦ is not needed, but it might make a few calculations or
observations easier. Try to find some similar triangles. Keep in mind that corresponding
altitudes of similar triangles are in the same ratio as their sides.

(b) A quadrilateral that can be inscribed in a circle, such as ABCD, is called a cyclic quadrilat-
eral. It might be useful to look up a few facts about cyclic quadrilaterals. Using these facts,
try to shown that ∠AFB + ∠AED + 2∠BAD = 180◦.

(c) 4DEF being equilateral tells us that ∠EDF = 60◦ and DE = DF . Trigonometry might

be useful in this problem. Since the question asks for the ratio
BD

AD
, you can assume that

AD = 1 (or has some other fixed value) and explore the possible values of BD.



Problem of the Month
Solution to Problem 8: May 2021

(a) The length LM is equal to the harmonic mean of AD and BC, or
2(AD)(BC)

AD +BC
. As

mentioned in the hint, the length of LM does not change even if ∠BAD 6= 90◦, so the
solution that follows will not assume ∠BAD = 90◦. The solution given assumes that both
∠BAD and ∠CDA measure at most 90◦. A very similar argument can be used to prove
the result if one of these angles is obtuse.

Begin by drawing a line through X that is perpendicular to AD, intersecting BC at E
and AD at F .

A

B C

D

L M

E

F

X

Since BC and AD are parallel, ∠BCA = ∠DAC which means ∠BCX = ∠DAX. We also
have that ∠AXD = ∠CXB since they are opposite angles. Therefore, 4BCX is similar
to 4DAX by angle-angle similarity.

Since 4BCX is similar to 4DAX, the corresponding altitudes EX and FX are in the

same ratio as corresponding sides. In particular,
EX

FX
=
BC

AD
which can be rearranged to

FX =
(AD)(EX)

BC
.

Since EF is perpendicular to AD and BC, it is perpendicular to LX. Therefore, the
height of 4BLX is the length of EX and the height of 4BAD is the length of EF . From
LX and AD being parallel, we also get that ∠BLX = ∠BAD and ∠BXL = ∠BDA.

Therefore, 4BLX and 4BAD are similar. This means
LX

AD
=

EX

EF
. Rearranging, we

have LX =
(AD)(EX)

EF
.

Using that EF = EX + FX, we can now compute LX in terms of AD and BC:

LX =
(AD)(EX)

EF
=

(AD)(EX)

EX +
(AD)(EX)

BC

=
(AD)(EX)(BC)

(EX)(BC) + (AD)(EX)

=
EX

EX
· (AD)(BC)

BC + AD

=
(AD)(BC)

AD +BC



A very similar calculation shows that XM =
(AD)(BC)

AD +BC
. It is also possible to see this by

showing directly that LX = XM . Therefore,

LM = LX +XM =
2(AD)(BC)

AD +BC
.

(b) Let ∠AFB = x◦, ∠AED = y◦, and ∠EAF = z◦. Since ABCD is a cyclic quadrilateral,
its opposite angles are supplementary. This means ∠BCD + ∠BAD = 180◦, and so
∠BCD = 180◦ − z◦. It is also true that ∠ABC + ∠ADC = 180◦, but we will not use this
directly.

Since BCF is a straight line, ∠FCD = 180◦ − ∠BCD = 180◦ − (180◦ − z◦) = z◦. Since
they are opposite angles, ∠ECB = ∠FCD = z◦ as well.

The angles in 4CDF add up to 180◦, which means ∠CDF = 180◦ − x◦ − z◦, and hence
∠ADE = x◦ + z◦ since ADF is a straight line. Also, in 4EAD we have

180◦ = ∠EAD + ∠AED + ∠ADE

= z◦ + y◦ + (x◦ + z◦)

which means x+ y + 2z = 180.

We are also assuming that x, y, and z are integers and that x, y, z is an increasing arithmetic
sequence. This means x is a positive integer and there is a positive integer d such that
y = x + d and z = x + 2d. Substituting these expressions into x + y + 2z = 180 gives
x+ (x+ d) + 2(x+ 2d) = 180 or 4x+ 5d = 180.

Rearranging this equation to 5d = 180−4x = 4(45−x), it must be the case that 4(45−x)
is a multiple of 5, which means 45 − x is a multiple of 5 since 5 is prime and 4 is not a
multiple of 5. It follows that x must be a multiple of 5. The possible values for x and the
corresponding values of d are summarized in the table below:

x 5 10 15 20 25 30 35 40
d 32 28 24 20 16 12 8 4

Note that we cannot have x ≥ 45 since this this would make 5d = 4(45 − x) ≤ 0 which
cannot happen since d > 0.

So far, we have shown that if the figure in the problem statement satisfies the given
conditions, then x must take one of the eight values in the table above. We will finish the
argument by discussing the fact that each of the above values of x actually occurs.

For x = 5, we construct quadrilateral ABCD so that ∠ABC = 106◦, ∠BCD = 111◦,
∠CDA = 74◦, and ∠DAB = 69◦. This quadrilateral is cyclic since

∠ABC + ∠CDA = ∠BCD + ∠DAB = 180◦.

As well, if AB and DC are extended to meet at E, then 4AED has angles measuring
69◦ and 74◦, so the third angle ∠AED = 180◦ − 69◦ − 74◦ = 37◦. Similarly, if AD and
BC are extended to meet at F , then ∠AFB = 180◦ − 69◦ − 106◦ = 5◦. Thus, with
ABCD constructed with the angles above, we get ∠AFB = 5◦, ∠AED = 37◦, as well as
∠BAD = ∠EAF = 69◦, so the degree measures of ∠AFB, ∠AED, and ∠EAF form an
increasing arithmetic sequence with integer values. Furthermore ∠AFB = 5◦, as desired.



Similar constructions can be used to show that the other seven values of x in the table
above can be achieved.

It is also true that if x, y, and z are any positive numbers satisfying x + y + 2z = 180
(whether or not they are integers and form an arithmetic sequence), then it is possible to
construct a quadrilateral ABCD so that AB and DC can be extended to meet at E and
AD and BC can be extended to meet at F in such a way that ∠AFB = x◦, ∠AED = y◦,
and ∠EAF = z◦. You might want to try to prove this!

(c) Suppose the vertices of DBCA are D(0, 0), B(0, b), C(a, b), and A(a, 0). Now let E(x, b)
be on BC and F (a, y) be on AC.

B(0, b)
C(a, b)

A(a, 0)D(0, 0)

E(x, b)

F (a, y)

Let α = ∠EDA and β = ∠FDA. We want to find conditions under which α − β = 60◦

and ED = FD. This is because a triangle is equilateral exactly when it is isosceles with
the equal sides meeting at a 60◦ angle.

Applying the Pythagorean theorem, we have that ED =
√
b2 + x2 and DF =

√
a2 + y2.

Thus, we suppose sin(α − β) = sin 60◦ and that
√
b2 + x2 =

√
a2 + y2. Notice that BC

and DA are parallel, so ∠BED = ∠EDA. Therefore, we can use right4BED to compute

sinα and cosα. Since sin 60◦ =

√
3

2
, we have

√
3

2
= sin(α− β)

= sinα cos β − cosα sin β

=
b√

b2 + x2
a√

a2 + y2
− x√

b2 + x2
y√

a2 + y2

=
ab− xy
b2 + x2

where the final equality is because
√
b2 + x2 =

√
a2 + y2. Rearranging this equation, we

have
√

3(b2 + x2) = 2(ab− xy). In a similar way, using that cos 60◦ =
1

2
, we get

1

2
= cos(α− β)

=
ax+ by

b2 + x2

which implies b2 + x2 = 2(ax + by). We are interested in the quantity
b

a
, which we will

denote by T . Similarly, set X =
x

a
and Y =

y

a
. Dividing

√
3(b2 + x2) = 2(ab − xy)



by a2 gives
√

3(T 2 + X2) = 2(T − XY ) and dividing b2 + x2 = 2(ax + by) by a2 gives
T 2 + X2 = 2(X + TY ). We now have two equations implied by the assumptions that
∠EDF = α− β = 60◦ and DE = DF :

√
3(T 2 +X2) = 2T − 2XY (1)

T 2 +X2 = 2X + 2TY. (2)

Multiplying Equation (1) by T and multiplying Equation (2) by X gives
√

3T (T 2 +X2) = 2T 2 − 2TXY

X(T 2 +X2) = 2X2 + 2TXY

then adding these equations leads to

(
√

3T +X)(T 2 +X2) = 2T 2 + 2X2.

The quantities a and b are positive, so T =
b

a
is positive, which means T 2 +X2 is positive,

and hence, it is nonzero. Dividing by T 2 +X2, we get that
√

3T +X = 2, so X = 2−
√

3T .

There are several ways to solve for Y in terms of T . We will return to the equations√
3(b2 + x2) = 2(ab− xy) and b2 + x2 = 2(ax + by). Using that b2 + x2 = a2 + y2, we get√
3(a2 + y2) = 2(ab− xy) and a2 + y2 = 2(ax+ by) which can be divided by a2 to get

√
3(1 + Y 2) = 2T − 2XY (3)

1 + Y 2 = 2X + 2TY (4)

Multiplying Equation (4) by Y gives Y (1 + Y 2) = 2XY + 2TY 2, and if we add this to
Equation (3), we get

(
√

3 + Y )(1 + Y 2) = 2T (1 + Y 2).

The quantity 1 + Y 2 is nonzero because it is positive, so we can divide both sides of the
equation by 1 + Y 2 to get

√
3 + Y = 2T or Y = 2T −

√
3.

Observe that 0 < x < a and 0 < y < b, so we can divide these two inequalities by a to get
0 < X < 1 and 0 < Y < T respectively. From 0 < X < 1 and X = 2 −

√
3T , we have

0 < 2 −
√

3T < 1. Rearranging 0 < 2 −
√

3T gives T <
2√
3

. Rearranging 2 −
√

3T < 1

gives
1√
3
< T , so we have

1√
3
< T <

2√
3
.

Using 0 < Y < T and Y = 2T −
√

3, we have 0 < 2T −
√

3 < T . Rearranging 0 < 2T −
√

3

gives

√
3

2
< T , and rearranging 2T −

√
3 < T gives T <

√
3. Therefore, we also have

√
3

2
< T <

√
3.

We know that
1√
3
< T and

√
3

2
< T . However, one can check that

1√
3
<

√
3

2
, so

the condition
1√
3
< T is redundant. Similarly,

2√
3
<
√

3, so the condition T <
√

3 is

redundant. We conclude that √
3

2
< T <

2√
3



and so we have that the quantity T =
BD

AD
must lie in the interval

(√
3

2
,

2√
3

)
.

To finish the argument, we will show that if
BD

AD
is in the interval

(√
3

2
,

2√
3

)
, then there

are points E on BC and F on AC so that 4DEF is equilateral. To that end, suppose
DBCA is a rectangle with BD = b AD = a. Choose E on BC so that BE = 2a −

√
3b

and choose F on AC so that AF = 2b−
√

3a.

Notice that 2a −
√

3b > 0 since this inequality can be obtained by rearranging
b

a
<

2√
3

which is what we are assuming. Thus, BE is positive and can be chosen as a length. As
well, BC − BE = a − (2a −

√
3b) =

√
3b − a which is positive. This can be seen by

rearranging
b

a
>

1√
3

, which is true since
b

a
>

√
3

2
>

1√
3

.

Thus, it is indeed possible to choose E on BC so that BE = 2a−
√

3b. Similar arguments
can be used to verify that it is possible to choose F on AC so that AF = 2b−

√
3a.

By the Pythagorean theorem, we have

DE =

√
b2 +

(
2a−

√
3b
)2

=

√
b2 + 4a2 − 4

√
3ab+ 3b2

= 2

√
a2 −

√
3ab+ b2

and similarly

DF =

√
a2 +

(
2b−

√
3a
)2

=

√
a2 + 4b2 − 4

√
3ab+ 3a2

= 2

√
a2 −

√
3ab+ b2

= DE

which shows that 4DEF is isosceles. To show that ∠EDF = 60◦, we will show that

cos∠EDF =
1

2
. This is sufficient since ∠EDF is an angle in a triangle, and 60◦ is the

only angle between 0◦ and 180◦ with its cosine equal to
1

2
. Using right-angle trigonometry



as well as the formula for cosine of a difference, we have

cos∠EDF = cos(∠EDA− ∠FDA)

= cos∠EDA cos∠FDA+ sin∠EDA sin∠FDA

=

(
BE

DE

)(
DA

DF

)
+

(
BD

DE

)(
AF

DF

)
=

(2a−
√

3b)(a)

(DE)(DF )
+
b(2b−

√
3a)

(DE)(DF )

=
2a2 −

√
3ab+ 2b2 −

√
3ab

4(a2 −
√

3ab+ b2)

=
2(a2 −

√
3ab+ b2)

4(a2 −
√

3ab+ b2)

=
1

2
.

The cancellation in the last line is allowed because the denominator is the product of two
side lengths of a triangle and is hence nonzero.

We have now shown that if
BD

AD
is between

√
3

2
and

2√
3

, then there is a way to choose

points E and F on BC and AC, respectively, so that 4DEF is equilateral.

Remark: If you assumed that AD = 1, then the correct answer to this problem is that√
3

2
< BD <

2√
3

. As well, we have assumed in this solution that E does not coincide with

B or C and that F does not coincide with A or C. You might want to think about what
happens if this is allowed and how it fits with what has been shown.


