Problem

A number n is multiplied by 6, and then 1 is subtracted.

- a) Write an algebraic expression for this statement.
- b) If you substitute different whole numbers for n in your expression from a), what is the smallest number n which gives a composite number as the answer?
- c) What is the next smallest whole number n that does not have a prime number as the answer?

Extension:

Predict the next number n which will give a composite number the expression in part a). Explain your reasoning.

Hints

Suggestion: Have students make a table showing values of n and 6n - 1

n	6 <i>n</i> - 1
1	5
2	11
:	:
h	$h \sim h$

Solution

- a) The algebraic expression is $6 \times n 1$.
- b) Substituting n = 1, 2, 3, ... into this expression reveals that the smallest value of n such that 6n 1 is a composite number is n = 6, which gives $6 \times 6 1 = 35$.
- c) Continuing the table, we see that the next value of n which gives a composite number is n = 11, which gives $6 \times 11 1 = 65$

n	6n - 1
1	5
2	11
3	17
4	23
5	29
6	35
7	41
8	47
9	53
10	59
11	65

Extension:

1. Careful observation of the table suggests that every fifth value of 6n - 1 is a multiple of 5, i.e., n = 1, 6, 11 give 6n - 1 = 5, 35, 65 respectively. This suggests n = 16 will also do so. To confirm this, note that n = 16 give $6 \times 16 - 1 = 95$. However, n = 13 give $6 \times 13 - 1 = 77$, which is a composite number as well; hence the 'next' number is n = 13.