Problem

A number n is multiplied by 6 , and then 1 is subtracted.

a) Write an algebraic expression for this statement.
b) If you substitute different whole numbers for n in your expression from a), what is the smallest number n which gives a

n	$6 n-1$
1	5
2	11
\vdots	\vdots

c) What is the next smallest whole number n that does not have a prime number as the answer?

Extension :

Predict the next number n which will give a composite number the expression in part a). Explain your reasoning.

Hints

Suggestion: Have students make a table showing values of n and $6 n-1$

n	$6 n-1$
1	5
2	11
\vdots	\vdots

Solution

a) The algebraic expression is $6 \times n-1$.
b) Substituting $n=1,2,3, \ldots$ into this expression reveals that the smallest value of n such that $6 n-1$ is a composite number is $n=6$, which gives $6 \times 6-1=35$.
c) Continuing the table, we see that the next value of n which gives a composite number is $n=11$, which gives $6 \times 11-1=65$

n	$6 n-1$
1	5
2	11
3	17
4	23
5	29
6	35
7	41
8	47
9	53
10	59
11	65

Extension:

1. Careful observation of the table suggests that every fifth value of $6 n-1$ is a multiple of 5 , i.e., $n=1,6,11$ give $6 n-1=5,35,65$ respectively. This suggests $n=16$ will also do so. To confirm this, note that $n=16$ give $6 \times 16-1=95$. However, $n=13$ give $6 \times 13-1=77$, which is a composite number as well; hence the 'next' number is $n=13$.
