Part II: For the Teacher

Curriculum Areas

Problem 1 - Measurement
Problem 2-Measurement
Problem 3-Geometry
Problem 4 - Pattern/Algebra
Problem 5-Number Sense
Problem 6 - Number Sense

Hints and Suggestions:

Problem 1

Hint 1 - How many minutes are there in one hour?
Hint 2 - How many seconds are there in one hour?
Problem 2
Hint 1 - How many megawatts per person were used by Canadians in 2006? By Americans?
Problem 3
Hint 1 - How far apart should adjacent vertices be to make a square?
Hint 2 - Do the other vertices need to be directly above A and B ?
Hint 3 - Where could the right angle of the triangle be placed?
Extension:
Hint 1 - Would a compass be helpful?
Problem 4
Suggestion: Have students make a table showing values of n and $6 n-1$

n	$6 n-1$
1	5
2	11
\vdots	\vdots

Problem 5

Hint 1 - What is the name for a number which has the form $n \times n$ for a whole number n ? What does this tell you about the volume number $m \times m \times m$?

Suggestion:

1. You may wish to have students make a table, as shown, as a way to show their results.

m	$V=m \times m \times m$	Could be Area?
1	$1 \times 1 \times 1$	Yes: 1×1
2	\vdots	\vdots
3		

Problem 6

Hint 1 - If 25 is a 1 -step palindrome, what can you say about 52 ?

Suggestion:

1. Once the groups have completed their hundred chart, have them check with other groups to verify their results.

Solutions

Problem 1

a) Since he skates at 35.78 km per hour, it would take Andrew Cogliano $7.8 \div 35.78 \approx 0.218$ hours to skate the cleared length of the Rideau Canal. Since there are 60 minutes in an hour, this is about $0.218 \times 60 \approx 13.08$ minutes.
b) Since he can run 100 m in 9.69 seconds, Usain Bolt can run 1 km in 96.9 seconds. Thus his speed is $1 \div 96.9 \approx 0.01032 \mathrm{~km}$ per second. Since there are 3600 seconds in 1 hour, this is about $0.01032 \times 3600 \approx 37.15 \mathrm{~km}$ per hour, which is slower than Jeremy Wotherspoon can skate. So Jeremy will take less time.
[Students may also calculate Usain Bolts' time directly, as $7.8 \mathrm{~km} \times 96.9$ seconds per $\mathrm{km}=755.82$ seconds $\equiv 755.82 \div 60 \approx 12.56$ minutes.]

Problem 2

a) Since one turbine produces 2 megawatts, to produce 70000 megawatts would require $70000 \div 2=$ 35000 turbines.
b) For wind power to generate $\frac{1}{3}$ of the 2006 consumption of 16378.62 million megawatts, it would need to generate $16378.62 \div 3 \approx 5459.54$ million megawatts, or 5459540000 megawatts. Thus, at 2 megawatts per turbine, this production level would require

$$
5459540000 \div 2=2729770000
$$

turbines, i.e., about 2.7 billion turbines, or about 1 turbine for every 3 people on earth!
c) Canada's consumption of 529.95 million megawatts for 30 million people is about $529.92 \div 30 \approx$ 17.7 megawatts per person. US consumption of 3816.85 million megawatts for about 300 million people is about $3816.85 \div 300 \approx 12.7$ megawatts per person. Thus Canadian consumption per person is 5 mega watts greater than in the US, i.e. is about $17.7 \div 12.7 \approx 1.4$ times that of the US. This is likely due to the much greater need for heat during the fall/winter/spring months, being that Canada's population lives much farther north than most of the US population.

Problem 3

a), b) (See graph below.) Students may or may not realize that negative y-values could be used. A few students may recognize in part b) that C could be at $(4,4)$ or $(4,0)$.

c) Any pair of points $C(2, y)$ and $D(6, y)$ will work, for $y>2$ or $y<2$.

Students may suggest going beyong the range of 8 for y. They may also suggest the negative y possibilities.

Note: The roles of C and D may be reversed in parts a) and c).

Extension:

1. Using a compass, set its span to be the distance $A B$. Then draw arc 1 with A as the pivot point, and arc 2 with B as the pivot point. The intersection C of arcs 1 and 2 must be the same distance from both A and B. Thus $A B C$ is an equilateral triangle.

This construction could be repeated below $A B$.

Problem 4

a) The algebraic expression is $6 \times n-1$.
b) Substituting $n=1,2,3, \ldots$ into this expression reveals that the smallest value of n such that $6 n-1$ is a composite number is $n=6$, which gives $6 \times 6-1=35$.
c) Continuing the table, we see that the next value of n which gives a composite number is $n=11$, which gives $6 \times 11-1=65$

n	$6 n-1$
1	5
2	11
3	17
4	23
5	29
6	35
7	41
8	47
9	53
10	59
11	65

Extension:

1. Careful observation of the table suggests that every fifth value of $6 n-1$ is a multiple of 5 , i.e., $n=1,6,11$ give $6 n-1=5,35,65$ respectively. This suggests $n=16$ will also do so. To confirm this, note that $n=16$ give $6 \times 16-1=95$. However, $n=13$ give $6 \times 13-1=77$, which is a composite number as well; hence the 'next' number is $n=13$.

Problem 5

a) For the number value of volume $V=m \times m \times m$ to equal that of the area $A=n \times n$ means $m \times m \times m=n \times n$ for some greater whole number n, i.e., $m \times m \times m$ must be the square of some number. The table reveals that the values of m between 1 and 10 that work are $m=1,4$, and 9 .
b) It appears that m must be

m	$V=$ $m \times m \times m$	$?$ Area of Square	m	$V=$ $m \times m \times m$	$?$ Area of Square
$\mathbf{1}$	$\mathbf{1}$	Yes: $\mathbf{1} \times \mathbf{1}$	11	1331	No
2	8	No	12	1728	No
3	27	No	13	2197	No
$\mathbf{4}$	$\mathbf{6 4}$	Yes: $\mathbf{8} \times \mathbf{8}$	14	2744	No
5	125	No	15	3375	No
6	216	No	$\mathbf{1 6}$	$\mathbf{4 0 9 6}$	Yes: $\mathbf{6 4} \times \mathbf{6 4}$
7	343	No	17	4913	No
8	512	No	18	5832	No
$\mathbf{9}$	$\mathbf{7 2 9}$	Yes: $\mathbf{2 7} \times \mathbf{2 7}$	19	6859	No
10	1000	No	20	8000	No

Extension:

1. A perfect square, like 4 , can be expressed as the product of two identical factors, like 2×2. Therefore when calculating the volume $4 \times 4 \times 4$, we are calculating $(2 \times 2) \times(2 \times 2) \times(2 \times 2)$. Because the factor 2 appears 6 times, it allows us to express the product as $(2 \times 2 \times 2) \times(2 \times 2 \times 2)$, which can be the area of a square. Only perfect squares, like 4 , will factor in this manner.

More formally, to have $m \times m \times m=n \times n$ requires m to be a square number because then $m=k \times k$ for some whole number k. Then $m \times m \times m=(k \times k) \times(k \times k) \times(k \times k)=$ $(k \times k \times k) \times(k \times k \times k)=n \times n$ for $n=k \times k \times k$. No other numbers will factor in this manner.

Problem 6

a) The results are shown in the chart below.

	Zero-Step	One-Step	Two-Step	Three-Step	Four-Step
N U M B E R		$10,12,13,14,15,16,17,18$, $20,21,23,24,25,26,27,29$, $30,31,32,34,35,36,38,40$, $41,42,43,45,47,50,51,52$, $53,54,56,60,61,62,63,65$, 70	$\begin{aligned} & 19,28,37,39,46,48,49 \\ & 57,58,64,67 \end{aligned}$	59, 68 $86,95$	69
P A L I N N D R O M E E	$\begin{aligned} & 1,2,3,4,5, \\ & 6,7,8,9,11, \\ & 22,33,44,55, \\ & 66 \\ & \\ & 77,88,99 \end{aligned}$	$11,33,44,55,66,77,88,99$ $22,33,55,66,77,88,99,121$, $33,44,55,77,88,99,121,44$ $55,66,77,99,121,5566,77$ $88,99,121,66,77,88,99,121$, 77 $88,99,121,88,99,121,99,121,101$	$\begin{aligned} & 121,121,121,363,121,363,484, \\ & 363,484,121,484 \\ & \\ & 121,363,484,121,363,484,121 \\ & 363,484 \end{aligned}$	1111,1111 1111,1111	4884

b) The completed hundred chart is shown below.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Observed patterns:

- The portion of the chart from 11 to 99 , excluding multiples of 10 , displays complete symmetry about the diagonal zero-step palindromes $11,22, \ldots, 99$.
- Most of the numbers are one-step palindromes.
- There are no two-step palindromes above the diagonal formed by $19,28,37, \ldots, 91$.
- The three- and four-step palindromes occur for numbers greater than 58.

Some further thought may lead students to see why the above types of palindromes occur where they do in the chart.

- One-step palindromes occur if the sum, S, of the digits of the number is less than 10 , or equal to 11, and the palindrome is $S S$ if $S<10$ (e.g., if the sum is 7 then the palindrome is 77), or 121 if $S=11$.
- Two-step palindromes occur if $S=10,12$, or 13 ; three-step palindrome occur if $S=14$, and four-step if $S=15$.

Extension:

1. a) The numbers $77,88,99$ are zero-step palindromes. The numbers $8,9,17,18,27,29,38$, 47 , predict that $80,90,71,81,72,92,83,74$ will be one-step palindromes, as is the number 100. The numbers $19,28,37,39,48,49,57,58,67$ predict that $91,82,73,93,84,94,75$, 85,76 will be two-step palidromes. The numbers 59,68 predict 95,86 will be three step, and 69 predicts 96 will be four-step.
b) The remaining six numbers are pairs 78 and 87,79 and 97 , and 89 and 98 .
