Problem

A 'Lorna' number has 3 digits, and the tens (middle) digit equals the hundreds (left) digit minus the units or ones (right) digit. For example, 752 is a 'Lorna' number, since 5 = 7 - 2 (which could also be written 7 = 5 + 2).

a) If the hundreds digit is a 3, what are the possible 'Lorna' numbers?

- b) If the hundreds digit is a 5, what are the possible 'Lorna' numbers?
- c) What is the least (smallest) possible 'Lorna' number? What is the greatest 'Lorna' number?
- d) How many 'Lorna' numbers are there in total?

Extension:

1. A 'Dennis' number also has 3 digits, but the tens digit is the units digit minus the hundreds digit. Is there the same number of 'Dennis' numbers as 'Lorna' numbers? Explain your answer.

Hints

Suggestion: Before beginning the problem, discuss with the class whether numbers with hundreds digit 0 are to be included (e.g., 077). The solutions below have assumed they are NOT allowed.

Part a)

Hint 1 - What pairs of digits have a sum of 3?

Part b)

Hint 1 - What pairs of digits have a sum of 5?

Part c)

Hint 1 - What will be the hundreds digit of the least 'Lorna' number? Of the greatest?

Part d)

Hint 1 - How many 'Lorna' numbers have 1 as the hundreds digit? How many have 2 as the hundreds digit? How many have 3? Can you see a pattern?

Suggestion: For a more challenging version of this problem, instead of starting with the definition of a 'Lorna' number, pose this initial question:

These are 'Lorna' numbers: 202, 312 440, 523, 514, 752. These are NOT 'Lorna' numbers: 222, 311, 443, 521, 732, 908. Write the definition of a 'Lorna' number.

Have students procede with parts a), b), c), d) as given.

Extension:

Suggestion: Ask students the same questions as suggested in the Hints for 'Lorna' numbers. Do they have the same answers for 'Dennis' numbers?

Solution

- a) Possible Lorna numbers with hundreds digit equal to 3 are: 303, 312, 321, and 330.
- b) Possible Lorna numbers with hundreds digit equal to 5 are: 505, 514, 523, 532, 541 and 550.
- c) The least possible Lorna number is 101; the greatest is 990.
- d) Using a chart to record all possible 'Lorna' numbers reveals a pattern:

Hundreds Digit	Possible 'Lorna' Numbers	Number of 'L' Numbers
1	101, 110	2
2	202, 220, 211	3
3	303, 312, 321, 330	4
4	404, 413, 422, 431, 440	5
9	909, 918, 927, 936, 945, 954, 963, 972, 981, 990	10

Thus the total number of 'Lorna' numbers is 2+3+4+5+6+7+8+9+10=54. Clearly, for each hundreds digit H there are H+1 'Lorna' numbers H T U with T = H - U, or H = T + U, giving possible values T = $0,1,2,\ldots,H$ while U = H, H-1, H-2,\ldots,0. For example, for H = 7, the 8 'Lorna' numbers are 707, 716, 725, 734, 743, 752, 761, 770.

Extension:

A chart recording all possible 'Dennis' numbers also reveals a pattern:

Units Digit	Possible 'Dennis' Numbers	Number of 'Dennis' Numbers
1	101	1
2	112, 202	2
3	123, 213, 303	3
4	134, 224, 314, 404	4
9	189, 279, 369, 459, 549, 639, 729, 819, 909	9

Clearly, for each units digit U there are exactly U 'Dennis' numbers H T U, with T = U - H, or U = H + T, giving possible values $H = 1,2,3,\ldots,U$ while $T = U-1, U-2,\ldots,1,0$. (Note that we have not permitted H = 0, i.e., 022 is not allowed, even though T=2, U=2, H=0 gives T=U-U.) For example, if U = 7, the 7 'Dennis' numbers are 167, 257, 347, 437, 527, 617, 707.

Thus the total number of 'Dennis' numbers is 1+2+3+4+5+6+7+8+9=45, so it is NOT the same as the number of 'Lorna' numbers.