## Problem

a) In the diagram at right, the sum of the three numbers on each of the five straight lines is equal to 18 . Each of the numbers $1,2,3$, $\ldots, 9$ is each used once, and only once. Find the numbers which could go in the circles labelled A,B,C,D,E,F.
b) Compare your solution with those of several classmates. Did anyone find a solution different from yours?
c) Try to solve the problem with the 7 replaced by 5 , as shown at right. What happens?

## Extension:

1. Explore the possible solutions when the number in the shaded circle M is something other than 7 or 5 . Hence show that 7 is the only possible choice for which there are solutions to this problem.




## Hints

Part a)
Hint 1 - What numbers could go in circles B and C?
Hint 2 - What numbers could go in circles A and D?
Part c)
Hint 1 - What number MUST go in circle B?
Extension:
Hint 1 - Start with the one of the two known possibilities for circle B. What does that tell you about A and C ?

Hint 2 - Pick a value for circle M. Does it work?

## Solution

a),b) There are only two possible numbers for circle B, namely, 8 or 9 . Once $B$ is chosen, $A, C$, and E are fixed, which in turn determines D and F . The two possible solutions are:

c) When the centre-left number is 5 instead of 7 , we have two possible scenarios for the horizontal line of three circles. If $\mathrm{B}=8$, then $8+5+\mathrm{E}=18$ would require $\mathrm{E}=5$, which is already used. If $\mathrm{B}=9$, then $9+5+\mathrm{E}=18$ would require $\mathrm{E}=4$, which is already used. Thus no solutions are possible when 7 is replaced with 5 .

## Extension:

1. To show why 7 is the only possible choice, just try the possibilities one-by-one. There are still only two possible values for B , namely, 8 or 9 . Here is the argument for $\mathrm{B}=8$, with initial configuration:


The four numbers available for the remaining four spaces are $2,3,5$, and 7 . So all we need to do is try each of these four for one of the spaces. Since we have already seen that $M=7$ has two solutions, and $M=5$ has none, we need only test $M=2$ and $M=3$. If we choose $M=2$, then $\mathrm{B}+\mathrm{M}+\mathrm{E}=18$ gives $\mathrm{E}=18-8-2=8$, which is already used. If $\mathrm{M}=3$, then $\mathrm{A}+\mathrm{M}$ $+\mathrm{D}=18$ gives $\mathrm{D}=18-6-3=9$, which is already used. Thus, if $\mathrm{B}=8$, the only possible choice of M is 7 .
A similar argument shows that $\mathrm{B}=9$ also yields no solutions other than $\mathrm{M}=7$.

