Problem

a) A pool table is 6 units by 11 units, as shown at right, with pockets only at the corners A,B,C,D. Suppose a ball is shot from S at a 45° angle, as shown, and continues to rebound at 45° each time it hits the edge of the table. Will it land in a pocket, eventually? If so, which one?

- b) Mark on the diagram the position from which you would have to shoot on the table in a) in order to sink the ball in pocket C with just one rebound.
- c) Suppose instead that the table is 6 units by 12 units, and S is still 2 units from A. If you shoot from the same initial position S, do you get the same result as in a)? Explain.

Extension:

1. Consider the set of points shown as bold dots on the edges of the 6 unit by 11 unit table from part a). Is there any starting point in the set from which you could shoot the ball with 45° rebounds so that it NEVER lands in a pocket, no matter how many times it rebounds? HINT: Trace the paths (in both directions) from starting points S_1 , S_2 , S_3 . Explain why this reveals the outcome for every path for a ball shot from any point in the set.

Hints

Suggestion: Have students outline several pool tables on graph paper for each question to avoid excessive erasing.

Part a)

Hint 1 - How can the squares on the grid paper help you to draw a 45° angle?

Part b)

Hint 1 - If you shot the ball from corner C at 45° from the table edges, where would it go?

Extension:

Hint 1 - If a ball lands in pocket C, where was its final rebound? What about if it lands in pocket A? pocket B? pocket D?

Suggestion: Use differently coloured pencils to experiment with drawing different paths for parts b) and c), and the Extension.

Solution

- a) The ball lands in pocket D after 9 rebounds, as shown by the solid path on the diagram.
- b) Working backwards from pocket C, we see that we would have to shoot the ball from position P, one unit below pocket D, in order for it to land in C with only one rebound.

c) On this 12 by 6 table, a ball shot from S never lands in a pocket; the sixth rebound occurs at the starting point S, and the ball repeats the same path again and again.

Extension:

1. The diagram at left below shows all the paths taken by a ball shot in either direction from each of the points S_1 , S_2 , S_3 . Note that, as suggested in the HINT, these paths include all possible paths taken by a ball shot from ANY point in the set. That is, eventually, a path from one of these three points hits any other chosen point in the set, after which the two paths would coincide.

The diagram at right below reveals that a ball which lands in pocket A had its final rebound at the point P_1 , moving from right to left; if it lands in pocket B, C, or D, it had its final rebound at P_2 (from left to right), P_3 (from left to right), or P_4 (from right to left), respectively.

Examining the paths in the left diagram, we see that balls leaving S_1 or S_3 eventually hit either P_2 or P_3 , while balls leaving S_2 eventually hit either P_1 or P_4 . Since this covers all paths from all points in the set, we see that there is NO point in the set from which a ball can be shot at a 45° angle and NOT land in one of the pockets.

