Problem

a) Make a list of all the factors of 24 . How many different triangles can be formed using any three of these numbers as the side lengths?
b) Write a sentence explaining why not all combinations of any three numbers from your list in a) will form a triangle.

Hints

Hint 1 - Can you form a triangle with sides of lengths 2,3 , and 6 ? Why or why not?
Suggestion: Supply students with about 30 toothpicks each, with a single toothpick having unit length, and suggest they try to form the triangles.

Solution

a) The factors of 24 are $2,3,4,6,8$ and 12 . Thus the five combinations which can form triangles are $\{2,3,4\},\{3,4,6\},\{3,6,8\},\{4,6,8\}$ and $\{6,8,12\}$.
b) The key idea is that the sum of the lengths of any two sides must be greater than the third side.
For example, $\{2,4,6\}$ can't form a triangle because $2+4=6$, so the sides $\xlongequal[6]{2.4}$ do not 'contain' any area. Similarly for the set $\{2,8,12\}, 2+8=10<12 \xlongequal{2 . \quad 8}$, so no triangle can be formed.
This is a famous mathematical theorem known as the 'Triangle Inequality': If a, b, c are the lengths of the sides of a triangle, then $a+b>c$.

