Problem

The area of one side of an Emmy-Os single-serving cereal box is $96 \mathrm{~cm}^{2}$. The area of another side of the same box is $48 \mathrm{~cm}^{2}$. The area of the top of the box is $32 \mathrm{~cm}^{2}$. What is the volume of the box if the length of each edge is a whole number?

Hints

Hint 1 - Is it possible to draw a diagram of the box?
Hint 2 - If this box is similar in shape to a cereal box, what shape are the faces? How do you find the area of these faces?

Hint 3 - What are possible lengths and widths for the top of the box, to make an area of $32 \mathrm{~cm}^{2}$? Which of these possibilities are reasonable?

Hint 4-Remember that the length of one side must match at least one length of the other side and of the top.

Solution

Since each edge length is a whole number, we examine the possible factors of each of the given areas, each area being the product of two lengths. The possibilities are:

Side 1: $\quad 96 \mathrm{~cm}^{2} \quad 2 \times 48,3 \times 32,4 \times 24,6 \times 16,8 \times 12$
Side 2: $48 \mathrm{~cm}^{2} \quad 2 \times 24,3 \times 16,4 \times 12,6 \times 8$
Top: $\quad 32 \mathrm{~cm}^{2} \quad 2 \times 16,4 \times 8$

Now we need to select three lengths a, b, c which appear in pairs among the products of factors, say, a, b for side $1, b, c$ for side 2, and c, a for the top. Since the top has the fewest possibilities, it is sensible to start with those. If we select 2×16, then side 2 has to be 2×24 (or 3×16), and side 3 has to be 24×16 (or 2×3), neither of which gives $96 \mathrm{~cm}^{2}$. So the top must be 4×8; then side 2 is 4×12 (or 6×8), and side 3 is 8×12 (or 6×4), of which only $8 \times 12=96$. So the dimensions of the box are 4 cm by 8 cm by 12 cm , and its volume is $4 \times 8 \times 12=384 \mathrm{~cm}^{3}$.

