${\bf Problem}$

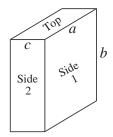
The area of one side of an Emmy-Os single-serving cereal box is 96 cm^2 . The area of another side of the same box is 48 cm^2 . The area of the top of the box is 32 cm^2 . What is the volume of the box if the length of each edge is a whole number?

Hints

- **Hint 1 -** Is it possible to draw a diagram of the box?
- **Hint 2 -** If this box is similar in shape to a cereal box, what shape are the faces? How do you find the area of these faces?
- **Hint 3 -** What are possible lengths and widths for the top of the box, to make an area of 32 cm²? Which of these possibilities are reasonable?
- **Hint 4** Remember that the length of one side must match at least one length of the other side and of the top.

Solution

Since each edge length is a whole number, we examine the possible factors of each of the given areas, each area being the product of two lengths. The possibilities are:



Side 1: 96 cm^2 2×48 , 3×32 , 4×24 , 6×16 , 8×12

Side 2: 48 cm^2 2×24 , 3×16 , 4×12 , 6×8

Top: $32 \text{ cm}^2 \quad 2 \times 16, 4 \times 8$

Now we need to select three lengths a, b, c which appear in pairs among the products of factors, say, a, b for side 1, b, c for side 2, and c, a for the top. Since the top has the fewest possibilities, it is sensible to start with those. If we select 2×16 , then side 2 has to be 2×24 (or 3×16), and side 3 has to be 24×16 (or 2×3), neither of which gives 96 cm^2 . So the top must be 4×8 ; then side 2 is 4×12 (or 6×8), and side 3 is 8×12 (or 6×4), of which only $8 \times 12 = 96$. So the dimensions of the box are 4 cm by 8 cm by 12 cm, and its volume is $4 \times 8 \times 12 = 384 \text{ cm}^3$.