
CEMC at Home

Grade 11/12 - Monday, May 4, 2020

Contest Day 1

Today’s resource features two questions from the 2020 CEMC Mathematics Contests.

2020 Canadian Team Mathematics Contest, Individual Problem #4

A spinner was created by drawing five radii from the centre of a circle.
The first four radii divide the circle into four equal wedges. The fifth
radius divides one of the wedges into two parts, one having twice the
area of the other. The five wedges are labelled as pictured with the
wedge labeled by 2 having twice the area of the wedge labeled by 1.
Determine the probability of spinning an odd number.

2020 Euclid Contest, #4(a)

The positive integers a and b have no common divisor larger than 1. If the difference between b and

a is 15 and
5

9
<

a

b
<

4

7
, what is the value of

a

b
?

More Info:

Check out the CEMC at Home webpage on Monday, May 11 for solutions to the Contest Day 1
problems.



CEMC at Home

Grade 11/12 - Monday, May 4, 2020

Contest Day 1 - Solution

Solutions to the two contest problems are provided below, including a video for the second problem.

2020 Canadian Team Mathematics Contest, Individual Problem #4

A spinner was created by drawing five radii from the centre of a circle.
The first four radii divide the circle into four equal wedges. The fifth
radius divides one of the wedges into two parts, one having twice the
area of the other. The five wedges are labelled as pictured with the
wedge labeled by 2 having twice the area of the wedge labeled by 1.
Determine the probability of spinning an odd number.

Solution:

The odd numbers on the spinner are 1, 3, and 5. The wedges labelled by 3 and 5 each take up 1
4

of
the spinner and so each will be spun with a probability of 1

4
. If we let the probability of spinning 1

be x, then we have that the probability of spinning 2 is 2x. The probability of spinning either 1 or
2 is 1

4
, which means x + 2x = 1

4
or 3x = 1

4
so x = 1

12
.

Therefore, the probability of spinning an odd number is 1
4

+ 1
4

+ 1
12

= 7
12

.

2020 Euclid Contest, #4(a)

The positive integers a and b have no common divisor larger than 1. If the difference between b and

a is 15 and
5

9
<

a

b
<

4

7
, what is the value of

a

b
?

Solution:

Since
a

b
<

4

7
and

4

7
< 1, then

a

b
< 1.

Since a and b are positive integers, then a < b.
Since the difference between a and b is 15 and a < b, then b = a + 15.

Therefore, we have
5

9
<

a

a + 15
<

4

7
.

We multiply both sides of the left inequality by 9(a+ 15) (which is positive) to obtain 5(a+ 15) < 9a
from which we get 5a + 75 < 9a and so 4a > 75.

From this, we see that a >
75

4
= 18.75.

Since a is an integer, then a ≥ 19.
We multiply both sides of the right inequality by 7(a+15) (which is positive) to obtain 7a < 4(a+15)
from which we get 7a < 4a + 60 and so 3a < 60.
From this, we see that a < 20.
Since a is an integer, then a ≤ 19.

Since a ≥ 19 and a ≤ 19, then a = 19, which means that
a

b
=

19

34
.

Video

Visit the following link for a discussion of two different approaches to solving the second contest
problem: https://youtu.be/phNdHo5mE2g.

https://youtu.be/phNdHo5mE2g


CEMC at Home

Grade 11/12 - Tuesday, May 5, 2020

Factoring Polynomials without Division

When solving problems we may encounter a polynomial with integer coefficients that needs to be
factored. You may have learned some techniques for factoring polynomials that use long division of
polynomials. In this activity we will factor some polynomials without using long division.

Definition: Suppose we have a polynomial in the variable x. If the polynomial evaluates to 0
when x = a, then we say that a is a root of the polynomial.

The Factor Theorem: If a is a root of a polynomial, then x−a is a factor of the polynomial.

Example 1

The number x = 3 is a root of the polynomial x2 − x− 6 since 32 − 3 − 6 = 0. The factor theorem
tells us that the polynomial x− 3 is a factor of the polynomial x2 − x− 6. We can check that indeed
x2 − x− 6 = (x− 3)(x + 2).

Example 2

The number x = −1 is a root of the polynomial x3+5x2+8x+4 since (−1)3+5(−1)2+8(−1)+4 = 0.
The factor theorem tells us that the polynomial x − (−1) = x + 1 is a factor of the polynomial
x3 + 5x2 + 8x + 4. We can check that indeed x3 + 5x2 + 8x + 4 = (x + 1)(x2 + 4x + 4).

How might we find this other quadratic factor?

In this activity, we will focus on factoring polynomials for which all but possibly two of the roots of
the polynomial are integers; however, the techniques for factoring that we present below can also be
useful in other situations.

Factoring Method

How do we go about factoring a polynomial with integer coefficients?

Let’s say we are factoring the cubic polynomial 2x3−x2−7x+6. If x = a is a root of this polynomial,
then x− a is a factor of the polynomial. If a is an integer, then when we factor out x− a, we are left
with some quadratic polynomial Ax2 + Bx + C with A, B, and C integers as shown

2x3 − x2 − 7x + 6 = (x− a)(Ax2 + Bx + C)

If we expand the product on the right side and compare its terms to the like terms on the left side,
we observe the following:

• The only term on the right side without an x in it will be the term −aC. This means 6 = −aC.
Since a and C are both integers, a must be a factor of 6.

• The only term on the right side with a power of x3 comes from multiplying the term x by the
term Ax2. This means the term 2x3 must be equal to the term Ax3 and so A = 2.

• There are two terms on the right side with a power of x2, and they come from multiplying the
term x by the term Bx and the term (−a) by the term Ax2. This means the term −x2 on the
left must be equal to (x)(Bx) + (−a)(Ax2) or Bx2 − aAx2.



Using these three observations, we can factor the polynomial completely! Start by testing all of the
factors of 6 to find an integer root x = a, and then use this value of a along with the other two obser-
vations to solve for the coefficients A, B, and C. The full process is outlined in the examples below.

Example 3: Factor the cubic polynomial 2x3 − x2 − 7x + 6.

2x3 − x2 − 7x+ 6
= (x− 1)(Ax2 +Bx+ C)

The factors of 6 are ±1,±2,±3 and ±6. Using these factors, we determine
that 1 is a root of the polynomial and so x − 1 is a factor. When we factor
out x− 1 we will be left with a quadratic which we will call Ax2 +Bx+ C.

= (x− 1)(2x2 +Bx− 6)
The 2x3 term from our original polynomial comes from multiplying x by Ax2.
Since 2x3 equals Ax3 we must have A = 2. The constant term 6 from our
original polynomial comes from multiplying −1 by C and so C = −6.

= (x− 1)(2x2 + x− 6)

The −x2 from our original polynomial comes from multiplying x by Bx and
adding it to −1 times 2x2. Since −x2 equals Bx2 − 2x2, we must have B = 1.
Note that we didn’t use the −7x term from our original polynomial, but it can
be used to check that we didn’t make a mistake.

= (x− 1)(x+ 2)(2x− 3) Finally, we factor the resulting quadratic using standard factoring techniques.

Example 4: Factor the quartic polynomial 6x4 − 7x3 − 13x2 + 4x + 4.

6x4 − 7x3 − 13x2 + 4x+ 4
= (x− 2)(Ax3 +Bx2 + Cx+D)

The factors of 4 are ±1,±2 and ±4. Using these factors we determine
that 2 is a root of our polynomial and so x− 2 is a factor.

= (x− 2)(6x3 +Bx2 + Cx− 2)
We use the 6x4 term from our original polynomial to determine that
A = 6 and the constant term 4 from our original polynomial to determine
that D = −2. Notice that 6x4 equals (x)(Ax3) and 4 equals (−2)(D).

= (x− 2)(6x3 + 5x2 + Cx− 2)
We use the −7x3 term from our original polynomial to determine that
B = 5. Notice that −7x3 equals (−2)(6x3) + (x)(Bx2).

= (x− 2)(6x3 + 5x2 − 3x− 2)
We use the 4x term from our original polynomial to determine that
C = −3. Notice that 4x equals (x)(−2) + (−2)(Cx).

= (x− 2)(x+ 1)(Ex2 + Fx+G)

For the rest of our solution we ignore the (x − 2) factor and focus on
factoring the cubic 6x3 + 5x2 − 3x− 2. Remember that we have already
discussed how to factor a cubic. The factors of −2 are ±1 and ±2. Using
these factors we determine that −1 is a root of this cubic and so x + 1
is a factor, and then we proceed as in Example 3.

Use these ideas to solve the following problems.

1. Factor x3 + 7x2 + 11x + 5.

2. Factor x4 + 5x3 − 3x2 − 17x− 10. Hint. Start by verifying that x = 2 is a root.

3. Factor 4x4 − 16x3 + x2 + 39x− 18.

4. Given that (Ax2 + Bx + C)(3x2 + Dx− 2) = 6x4 + 3x3 − 40x2 + 2x + 4, determine the values
of A,B,C and D.

More Info:

Check out the CEMC at Home webpage on Tuesday, May 12 for a solution to Factoring Polynomials
without Division.

When finding the roots of these polynomials we looked at a special case of the Rational Roots The-
orem. To learn more about the Rational Roots Theorem check out the lesson Factoring Polynomials
Using the Factor Theorem from the CEMC Advanced Functions and Pre-Calculus courseware.

https://courseware.cemc.uwaterloo.ca/8/33/assignments/70/0
https://courseware.cemc.uwaterloo.ca/8/33/assignments/70/0


CEMC at Home

Grade 11/12 - Tuesday, May 5, 2020

Factoring Polynomials without Division - Solution

We use the strategy outlined in the activity to factor the first cubic.

Question 1: Factor x3 + 7x2 + 11x + 5

Solution:

x3 + 7x2 + 11x + 5
= (x+ 1)(Ax2 +Bx+C)

The factors of 5 are ±1 and ±5. Using these factors, we determine that −1 is a
root and so x− (−1) = x + 1 is a factor.
Note that −5 is also a root and so we could instead start with the factor x + 5.

= (x + 1)(x2 + Bx + 5)
The x3 term from our original polynomial comes from multiplying x by Ax2 and so
A = 1. The constant term 5 from our original polynomial comes from multiplying
1 by C and so C = 5.

= (x− 1)(x2 + 6x + 5)
The 7x2 term from our original polynomial comes from multiplying x by Bx and
adding the result to 1 times x2. In other words, the term 7x2 equals Bx2 + x2 or
(B + 1)x2. Comparing coefficients gives 7 = B + 1 or B = 6.

= (x + 1)(x + 1)(x + 5) Factor the resulting quadratic.

We use a similar strategy to factor a quartic polynomial with integer coefficients. In this case, once
we find an integer root a, and factor out the corresponding linear factor x− a, we will be left with a
cubic polynomial Ax3 + Bx2 + Cx + D with A, B, C, and D integers for which we can solve.

Question 2: Factor x4 + 5x3 − 3x2 − 17x− 10

Solution:

x4 + 5x3 − 3x2 − 17x− 10
= (x−2)(Ax3+Bx2+Cx+D)

Remember that we were told in the question that 2 is a root. You should
verify this. This means that x − 2 is a factor. We factor this term out and
are left with a cubic polynomial as shown.

= (x− 2)(x3 + Bx2 + Cx + 5)
The x4 term from our original polynomial comes from multiplying x by Ax3

and so A = 1. The constant term −10 from our original polynomial comes
from multiplying −2 by D and so D = 5.

= (x− 2)(x3 + 7x2 + Cx + 5)

The 5x3 term from our original polynomial comes from multiplying x by Bx2

and adding the result to −2 times x3. In other words, the term 5x3 equals
(x)(Bx2)+(−2)(x3) or Bx3−2x3. Comparing coefficients, we have 5 = B−2
and so B = 7.

= (x− 2)(x3 + 7x2 + 11x + 5)
The −17x term from our original polynomial comes from multiplying x by 5
and adding the result to −2 times Cx. In other words, the term −17x equals
(x)(5) + (−2)(Cx) or 5x− 2Cx. This means −17 = 5 − 2C and so C = 11.

= (x− 2)(x+ 1)(x+ 1)(x+ 5)
Notice that this cubic is identical to the cubic from Question 1 and so we can
use the factorization found earlier to finish factoring this quartic.



We use a similar strategy to factor the next quartic polynomial, but this time we need to find a root
on our own. Again, it can be shown that if a is an integer root of the polynomial, then a must be a
factor of the constant term, −18.

Question 3: Factor 4x4 − 16x3 + x2 + 39x− 18.

Solution:

4x4 − 16x3 + x2 + 39x− 18
= (x−2)(Ax3+Bx2+Cx+D)

The factors of −18 are ±1,±2,±3,±6, ±9, and ±18. Using these factors, we
determine that 2 is a root and so x− 2 is a factor.

= (x−2)(4x3 +Bx2 +Cx+ 9)
The 4x4 term from our original polynomial comes from multiplying x by Ax2

and so A = 4. The constant term −18 from our original polynomial comes
from multiplying −2 by D and so D = 9.

= (x− 2)(4x3− 8x2− 15x+ 9)

The −16x3 term from our original polynomial comes from multiplying x by
Bx2 and adding the result to −2 times 4x3. Therefore, B = −8. The 39x
term from our original polynomial comes from multiplying x by 9 and adding
the result to −2 times Cx. Therefore, C = −15.

= (x−2)(x−3)(Ex2+Fx+G)
Now we factor the cubic. The factors of 9 are ±1,±3, and ±9. Using these
factors, we determine that 3 is a root and so x− 3 is a factor of the cubic.

= (x− 2)(x− 3)(4x2 + 4x− 3)
Using the 4x3 term, we determine that E = 4 and using the constant term 9,
we determine that G = −3. Using the −8x2 term, we determine that F = 4.

= (x−2)(x−3)(2x−1)(2x+3) Factor the resulting quadratic.

Finally, we use what we have learned to solve the following problem.

Question 4: Given that (Ax2 +Bx+C)(3x2 +Dx− 2) = 6x4 + 3x3 − 40x2 + 2x+ 4, determine the
values of A,B,C and D.

Solution:

Consider the equality (Ax2 + Bx + C)(3x2 + Dx− 2) = 6x4 + 3x3 − 40x2 + 2x + 4.

The 6x4 term on the right side must come from multiplying the term Ax2 by the term 3x2 on the
left side. Since 6x4 is equal to 3Ax4 we must have 3A = 6 and so A = 2.

The constant term 4 on the right side must come from multiplying C by −2 on the left side. Since
4 is equal to −2C we must have C = −2.

This means we have (2x2 + Bx− 2)(3x2 + Dx− 2) = 6x4 + 3x3 − 40x2 + 2x + 4.

The 3x3 term must come from multiplying the term 2x2 by the term Dx and adding the result to
the product of Bx and 3x2. Since 2x2 is equal to 2Dx3 + 3Bx3, we must have 2D + 3B = 3.

Similarly, we can show that 2x must be equal to (Bx)(−2) + (−2)(Dx) = −2Bx− 2Dx. This means
−2B − 2D = 2.

Since 2D+3B = 3 and −2B−2D = 2, adding the two equations gives B = 5. We can then determine
that D = −6.

This means we have A = 2, B = 5, C = −2, D = −6, and

(2x2 + 5x− 2)(3x2 − 6x− 2) = 6x4 + 3x3 − 40x2 + 2x + 4
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Bracelets

Stephen makes bracelets using the six replacement rules below.

Stephen always starts his pattern with the symbol . Then, one at a time, he replaces a symbol
in the current pattern with a new sequence of symbols based on the rules above. Any symbol that
appears on the left side of an arrow can be replaced with a sequence that appears on the right side
of a connected arrow. In some, but not all cases, he has a choice about which particular replacement
he could make at a particular stage in the process.

Example

Stephen could make the bracelet following these steps:

Step Current Pattern Explanation

1 Stephen always starts with this symbol

2 is replaced by

3 is replaced by

4 is replaced by

5 is replaced by

6 is replaced by

7 is replaced by

Problems

1. Give a sequence of steps that Stephen could follow in order to produce the following bracelet:

2. Consider the three bracelets below. Stephen can make exactly two of the three bracelets using
the rules. Explain how Stephen can make two of these bracelets, and explain why the remaining
bracelet cannot be made using any sequence of steps.

(a)

(b)

(c)

More Info:

Check out the CEMC at Home webpage on Wednesday, May 13 for a solution to Bracelets.
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Bracelets - Solution

Before we look at particular sequences of symbols, we simplify the original six rules reproduced below.

Observe that five of the six rules do not involve a choice of which pattern to produce.

Recall that Stephen always starts with the symbol and so the next pattern must then be

. At some point, the leftmost symbol will be replaced by and the

rightmost symbol will be replaced by . This means that to determine if it is possible to make a
certain bracelet, we only need to determine if it is possible to create the “middle portion” by starting
with and following the three rules shown above on the right.

Notice that we can substitute the rightmost two rules into the replacement rule for to give
us the following single rule equivalent to the rightmost three original rules.

We will call the three choices in the rule above A (top), B (middle), and C (bottom).

1. Stephen can make the bracelet shown below by making the choices C, C, C, A, B (in that order).

2. Stephen can make bracelets (a) and (c) but not (b).

Stephen can make the bracelet shown below by making the choices A, C, A, B (in that order).

(a)

Stephen can make the bracelet shown below by making the choices C, A, A, B (in that order).

(c)

Stephen cannot make the bracelet shown below.

(b)

To justify this, we read from left to right to see that generating this bracelet would require

us to make choice C first and then A. At this point, the next symbol is which can only
be achieved by choosing B next. This ends our replacement choices, but we have the wrong

bracelet. (We are missing the rightmost sequence.)



CEMC at Home features Problem of the Week

Grade 11/12 - Thursday, May 7, 2020

The Factor Flip

Dani has 10 cards, each with a number on one side. The numbers on the cards are 10, 15, 27, 33, 34,
35, 64, 65, 143, and 323. The cards are placed on a table with the numbers facing up.

Dani takes a card and flips it over so it is now face down. Of the remaining cards that are still face
up, the next card she flips over must have a prime factor in common with the card she last flipped
over. She continues in this way until either all the cards have been flipped over, or she is unable to
flip any of the cards that remain face up.

List all the possible orders in which Dani can flip the cards so that all cards get flipped over.

10

15

27

33
34

35 64

65

143

323

More Info:

Check the CEMC at Home webpage on Thursday, May 14 for the solution to this problem.
Alternatively, subscribe to Problem of the Week at the link below and have the solution emailed to
you on Thursday, May 14.

This CEMC at Home resource is the current grade 11/12 problem from Problem of the Week
(POTW). POTW is a free, weekly resource that the CEMC provides for teachers, parents, and
students. Each week, problems from various areas of mathematics are posted on our website
and e-mailed to our subscribers. Solutions to the problems are e-mailed one week later, along
with a new problem. POTW is available in 5 levels: A (grade 3/4), B (grade 5/6), C (grade
7/8), D (grade 9/10), and E (grade 11/12).

To subscribe to Problem of the Week and to find many more past problems and their solutions
visit: https://www.cemc.uwaterloo.ca/resources/potw.php

1

https://www.cemc.uwaterloo.ca/resources/potw.php


Problem of the Week
Problem E and Solution

The Factor Flip

Problem

10

15

27

33
34

35 64

65

143

323

Dani has 10 cards, each with a number on one side. The numbers on the cards are 10, 15, 27,
33, 34, 35, 64, 65, 143, and 323. The cards are placed on a table with the numbers facing up.
Dani takes a card and flips it over so it is now face down. Of the remaining cards that are still
face up, the next card she flips over must have a prime factor in common with the card she last
flipped over. She continues in this way until either all the cards have been flipped over, or she
is unable to flip any of the cards that remain face up. List all the possible orders in which Dani
can flip the cards so that all cards get flipped over.

Solution
We will start by writing down the prime factors for each of the numbers on the
cards.

Number Prime Factors
10 2,5
15 3,5
27 3
33 3,11
34 2,17

Number Prime Factors
35 5,7
64 2
65 5,13
143 11,13
323 17,19

Notice the number 323 shares a prime factor with only the number 34. That
means we must start (or end) with 323.

If we start with 323, then the next number must be 34. From 34, the next
number could be 64 or 10. If the next number were 10, then in order to
eventually flip over the 64 card, the 64 must follow the 10, and at this point no
more cards can be flipped. Therefore, in order to flip all the cards, the first four
numbers flipped must be 323, 34, 64, and then 10.

From this point, we can draw lines between numbers that share prime factors to
create the following diagram.

10 35 65 143 33 27 15



We now just need to figure out the number of paths through the diagram,
starting at 10 that use each number exactly once.

After 10, the next number can be 35, 65, or 15. In each case, we carefully trace
through all possible paths.

Case 1: The number 35 follows the number 10. That gives us the following five
possible paths.

35, 15, 65, 143, 33, 27
35, 15, 27, 33, 143, 65
35, 65, 15, 27, 33, 143
35, 65, 143, 33, 27, 15
35, 65, 143, 33, 15, 27

Case 2: The number 65 follows the number 10. That gives us the following two
possible paths.

65, 143, 33, 27, 15, 35
65, 35, 15, 27, 33, 143

Case 3: The number 15 follows the number 10. That gives us the following two
possible paths.

15, 27, 33, 143, 65, 35
15, 35, 65, 143, 33, 27

Starting with the card numbered 323, we have found that there is a total of nine
orders for flipping the cards:

323, 34, 64, 10, 35, 15, 65, 143, 33, 27
323, 34, 64, 10, 35, 15, 27, 33, 143, 65
323, 34, 64, 10, 35, 65, 15, 27, 33, 143
323, 34, 64, 10, 35, 65, 143, 33, 27, 15
323, 34, 64, 10, 35, 65, 143, 33, 15, 27
323, 34, 64, 10, 65, 143, 33, 27, 15, 35
323, 34, 64, 10, 65, 35, 15, 27, 33, 143
323, 34, 64, 10, 15, 27, 33, 143, 65, 35
323, 34, 64, 10, 15, 35, 65, 143, 33, 27

Each of these can be reversed, so the total number of possible orders is 18.

Therefore, there are 18 orders in which Dani can flip the cards so that all cards
get flipped over. They are the 9 orders listed above and the reverse of each.
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Polar Curves
Last week we learned about a different coordinate system for the plane: the Polar Coordinate System.
Remind yourself about how to work with polar coordinates before you try this activity.

O

P (r, θ)

x

y

r

θ

Relationships between Cartesian coordinates
and polar coordinates of a point in the plane

x = r cos θ

y = r sin θ

r =
√
x2 + y2

Why might we want to view the plane through the lens of polar coordinates? One reason is that
simple equations of the form r = f(θ) involving polar coordinates can lead to interesting graphs!

Let f be a function on the real numbers. The graph of the polar equation r = f(θ) consists of
all points in the plane that have polar coordinates, (r, θ), that satisfy the relation r = f(θ).

Activity

Consider the following polar equations and the graphs below. Exactly one of the graphs corresponds
to each equation. Can you match each equation with its graph? Think about the following techniques:

• Plot some key points on the curve. For example, when θ = π
2
, what is the value of r?

• Remember that −1 ≤ sin θ ≤ 1 and −1 ≤ cos θ ≤ 1. What does this mean for the range of r?

• Think about how r changes as θ changes. (See the next pages for help with this.)

• How are points with a negative r-coordinate plotted? (See the next pages for help with this.)

1. r = 2

2. r = sin θ

3. r = 1 + cos θ

4. r = 1 + sin θ

5. r = 1 + 2 sin θ

6. r = 1 − 3 sin θ

7. r = sin(2θ)

8. r = 2 cos(3θ)

Example 1: Look at graph F. You should recognize this as a circle centred at the origin with radius
2. The points on this curve must be the points having polar coordinates that look like (2, θ) for some
θ (2 units from the origin, at any angle). This means graph F must be matched with equation r = 2.

Note that we could also determine what the graph of r = 2 must look like by transforming this polar
equation into a Cartesian equation. Since r =

√
x2 + y2, a point’s polar coordinates satisfy the

equation r = 2 exactly when its Cartesian coordinates satisfy the equation
√
x2 + y2 = 2. Squaring

both sides reveals the equation x2 + y2 = 4 which describes the circle shown!



Can you match each of the eight graphs with one of the eight equations without actually trying to
sketch the complete graphs of the polar equations? Read the following example to get you started on
possible matching strategies that do not involve graphing the polar equations.

Example 2

Consider graph B. Given that this graph is matched with one of the five equations below, can
you figure out which one by eliminating all but one equation?

1. r = 2

2. r = sin θ

3. r = 1 + cos θ

4. r = 1 + sin θ

7. r = sin(2θ)

Let’s see if we can use only the range of r to eliminate several possibilities.

1. Graph B cannot be the graph of r = 2: We have already determined that r = 2 is matched
with another graph.

2. Graph B cannot be the graph of r = sin θ: Since sin θ cannot be larger than 1, no points on
the graph of this polar equation can be more than 1 unit from the origin. Graph B has at least
one point 2 units from the origin.

3. Graph B might be the graph of r = 1 + cos θ: Since −1 ≤ cos θ ≤ 1, we have 0 ≤ 1 + cos θ ≤ 2
and so the points on this graph should all be within 2 units of the origin or exactly 2 units
from the origin. This is true of the graph B.

4. Graph B might be the graph of r = 1 + sin θ: Similar reasoning as in 3.

7. Graph B cannot be the graph of r = sin(2θ): Similar reasoning as in 2.

By considering the range of r we have narrowed down the choices to two equations: r = 1 + cos θ
and r = 1 + sin θ.

Can you see which one must be the correct equation for Graph B? Try plotting a few points.

For equation 3: When θ = 0 we have r = 1 + cos 0 = 2. This matches the graph above.

For equation 4: When θ = 0 we have r = 1 + sin 0 = 1. This does not match the graph above.

This tells us that the equation must be 3: r = 1 + cos θ.

On the next page we will discuss how to sketch the graph of the polar equation r = 1 + cos θ to see
exactly why Graph B above matches this equation. You do not need to sketch this graph to complete
the activity, but you may still want to spend some time thinking about why this is the correct graph.

For many of the eight equations, there are pairs (r, θ) with r < 0 that satisfy the equation. We discuss
how to interpret negative r-coordinates on the last pages of the resource.



Example 3: Sketch the graph of the polar equation r = 1 + cos(θ).

Plot a few key points.

• When θ = 0, r = 2.

• When θ = π
2
, r = 1.

• When θ = π, r = 0.

• When θ = 3π
2

, r = 1.

• When θ = 2π, r = 2.

Think about the range of r.

Since −1 ≤ cos θ ≤ 1, we must have 0 ≤ 1 + cos θ ≤ 2. This means all points on the graph must be
at most 2 units from the origin.

Think about how r changes as θ changes.

Can you describe what happens to r as θ ranges from 0 to 2π? We sketch the graph of y = 1 + cosx
drawn in the usual Cartesian plane. Can you see how to use this information to make the the table?

θ r = 1 + cos(θ) Polar Point
0 2 (2, 0)

0 to π
2

r decreases from 2 to 1
π
2

1 (1, π
2
)

π
2

to π r decreases from 1 to 0

π 0 (0, π)

π to 3π
2

r increases from 0 to 1
3π
2

1 (1, 3π
2

)
3π
2

to 2π r increases from 1 to 2

2π 2 (2, 2π)

Draw a rough sketch of the curve

As θ increases from 0 to π
2 ,

r decreases from 2 to 1. So
we connect the polar points
(2, 0) and (1, π2 ) through the
first quadrant.

As θ increases from π
2 to π,

r decreases from 1 to 0. So
we connect the polar points
(1, π2 ) and (0, π) through the
second quadrant.

As θ increases from π to 3π
2 ,

r increases from 0 to 1. So
we connect the polar points
(0, π) and (1, 3π2 ) through the
third quadrant.

As θ increases from 3π
2 to 2π,

r increases from 1 to 2. So
we connect the polar points
(1, 3π2 ) and (2, 2π) through
the fourth quadrant.

Can you convince yourself that the sketch will take this curved shape? We used technology to plot
many points in order to get an accurate curve. Since the function cos θ repeats with period 2π,
plotting points for more values of θ will just result in drawing this same curve over again!



Example 4: Consider the polar equation r = 1 + 2 sin θ.

Notice that there are values of θ for which the corresponding r is negative. For example, when θ = 3π
2

,
we have

r = 1 + 2 sin
(
3π
2

)
= 1 + 2(−1) = −1

What does this mean in terms of our graphing activity?

Can we plot points with polar coordinates with negative values of r?

We can extend the definition of polar coordinates to include negative values of r.
How do we interpret the polar coordinates (1, π

2
) versus the polar coordinates (−1, π

2
)?

• The fact that they both have the same angle π
2

tells us that they both describe points that lie
on the line passing through the origin and making an angle of π

2
with the positive x-axis.

• The magnitude of the radii both being 1 tell us that they both describe points that are 1 unit
from the origin.

• The different signs tell us that they describe points on opposite sides of the origin. The negative
means that we move in the direction opposite to the direction defined the ray θ = π

2
. This means

moving in the direction defined by the ray θ = 3π
2

.

So the polar coordinates (−1, π
2
) are equivalent to the polar coordinates (1, 3π

2
) and they both repre-

sent the Cartesian point (0,−1). Indeed if we use the usual formulas to convert from polar coordinates
to Cartesian coordinates, we get the following:

Polar coordinates (−1, π
2
)

x = r cos θ = (−1) cos
(
π
2

)
= 0

y = r sin θ = (−1) sin
(
π
2

)
= −1

Polar coordinates (1, 3π
2

)

x = r cos θ = 1 cos
(
3π
2

)
= 0

y = r sin θ = 1 sin
(
3π
2

)
= −1

Example 5: Consider the graph of the polar equation r = 1 + 2 sin θ.

Note that it will be important to know where r changes from negative to positive. To find these places,
we solve the equation r = 1 + 2 sin θ = 0. Two solutions are θ = 7π

6
, 11π

6
.

Plot a few key points.

• When θ = 0 (or θ = 2π), r = 1.

• When θ = π
2
, r = 3.

• When θ = π, r = 1.

• When θ = 7π
6

, r = 0.

• When θ = 3π
2

, r = −1.

Remember that this pair describes the same
point as the pair θ = π

2
and r = 1.

• When θ = 11π
6

, r = 0.

Think about the range of r.

Since −1 ≤ sin θ ≤ 1, we must have −1 ≤ 1 + 2 sin θ ≤ 3. Since the magnitude of r must be at most
3, we know that all points on the graph must lie at most 3 units away from the origin.



Think about how r changes as θ changes.

Can you describe what happens to r as θ
ranges from 0 to 2π?

θ r = 1 + 2 sin(θ) Polar Point

0 1 (1, 0)

0 to π
2

r increases from 1 to 3

π
2

3 (3, π
2
)

π
2

to π r decreases from 3 to 1

π 1 (1, π)

π to 7π
6

r decreases from 1 to 0

7π
6

0 (0, 7π
6

)

7π
6

to 3π
2

r decreases from 0 to −1

3π
2

−1 (−1, 3π
2

)

3π
2

to 11π
6

r increases from −1 to 0

11π
6

0 (0, 11π
6

)

11π
6

to 2π r increases from 0 to 1

2π 1 (1, 2π)

It is not easy to see how to translate the complete information from the table into a sketch of the
graph. It takes most people a lot of time to get comfortable sketching these curves when they involve
negative values of r. Luckily, you do not need to sketch the whole curve in order to figure out
which graph matches the equation r = 1 + 2 sin θ. If you can draw a few “pieces” of the graph for
r = 1 + 2 sin θ then you should be able to pick its graph out of the list. In fact, you might be able to
pick out the correct graph by using only the key points considered in this example!

More Info:

Check out the CEMC at Home webpage on Friday, May 15 for a solution to Polar Curves.

You may also want to check out some of the free online graphing calculators for polar curves, like
the ones offered by WolframAlpha or Desmos to verify your answers.

The graphs in the header of the first page of this activity each come from graphing one of the following
polar equations. Which equation matches which graph and why?

r = 2 + cos
(
3θ
2

)
r = cos

(
4θ
3

)



CEMC at Home

Grade 11/12 - Friday, May 8, 2020

Polar Curves - Solution

O

P (r, θ)

x

y

r

θ

Relationships between Cartesian coordinates
and polar coordinates of a point in the plane

x = r cos(θ)

y = r sin(θ)

r =
√
x2 + y2

Let f be a function on the real numbers. The graph of the polar equation r = f(θ) consists of
all points in the plane that have polar coordinates, (r, θ), that satisfy the relation r = f(θ).

Activity

Consider the following polar equations and the graphs below. Exactly one of the graphs corresponds
to each equation. Can you match each equation with its graph?

Answers (explanations provided on the pages that follow)

1. r = 2 2. r = sin θ

3. r = 1 + cos θ 4. r = 1 + sin θ

5. r = 1 + 2 sin θ 6. r = 1 − 3 sin θ

7. r = sin(2θ) 8. r = 2 cos(3θ)



Step 1: Think about the range of r. (This is only one of many possible first steps.)

For the equations: Using the fact that −1 ≤ sin θ ≤ 1 and −1 ≤ cos θ ≤ 1, we can determine the
range of r values for the polar functions r = f(θ).

For the graphs: We cannot determine the exact range of r values of the associated equation just by
looking at the graph, but we can determine an upper bound on the magnitude of r from the graph.

1. r = 2

Range: 2 ≤ r ≤ 2

All points appear to be 2 units away from the origin.

2. r = sin θ

Range: −1 ≤ r ≤ 1

7. r = sin(2θ)

Range of r: −1 ≤ r ≤ 1
The points that are farthest from the origin appear to be
1 unit away.

3. r = 1 + cos θ

Range of r: 0 ≤ r ≤ 2

4. r = 1 + sin θ

Range of r: 0 ≤ r ≤ 2

8. r = 2 cos(3θ)

Range of r: −2 ≤ r ≤ 2
The points that are farthest from the origin appear to be
2 units away.

5. r = 1 + 2 sin θ

Range of r: −1 ≤ r ≤ 3

The points that are farthest from the origin appear to be
3 units away.

6. r = 1 − 3 sin θ

Range of r: −2 ≤ r ≤ 4

The points that are farthest from the origin appear to be
4 units away.



Step 2: Plot a few key points

Our work on the previous page matches equations 1, 5, and 6 with their graphs, and divides the
remaining equations into two different groups as shown below. To determine which equation matches
with which graph (within its group) we will think about plotting a few key points.

2. r = sin θ

7. r = sin(2θ)

Consider the point in the plane with Cartesian coordinates (x, y) = (0, 1). Notice that this point is
on graph H above but not on graph A. One way to describe this point using polar coordinates is
(r, θ) = (1, π

2
).

Since 1 = sin
(
π
2

)
, this point must be on the graph of equation 2: r = sin θ. This means equation 2

must be matched with graph H. It follows that equation 7 must be matched with graph A.

3. r = 1 + cos θ

4. r = 1 + sin θ

8. r = 2 cos(3θ)

First, consider the point with Cartesian coordinates (x, y) = (2, 0). Notice that this point is on
graphs B and C above but not on graph G. One way to describe this point using polar coordinates
is (r, θ) = (2, 0).

Since 2 = 1+cos(0) and 2 = 2 cos(3 ·0), this point must be on the graphs of equation 3 (r = 1+cos θ)
and equation 8 (r = 2 cos(3θ)). This means equations 3 and 8 must be matched with graphs B and
C, in some order. It follows that equation 4 (r = 1 + sin θ) must be matched with graph G.

Now, consider the point with Cartesian coordinates (x, y) = (0, 1) and polar coordinates (r, θ) =
(1, π

2
). Notice that this point is on graph B but not on graph C.

Since 1 = 1 + cos
(
π
2

)
, this point must be on the graph of equation 3: r = 1 + cos θ. This means

equation 3 must be matched with graph B. It follows that equation 8 must be matched with graph C.

Notice that we have completed the matching activity without actually graphing any of the polar equa-
tions completely. We have just picked out certain characteristics of the equations and the graphs in
order to find the right matches. We encourage you to follow the strategy outlined in the activity for
how to sketch the graphs of the equations from scratch, and confirm the matchings that way as well.
On the next page, we revisit the polar equation r = 1 + 2 sin θ that was discussed in the activity, and
outline how to sketch its graph.



Using a few key points on the graph, and the table below, we sketch the graph of r = 1 + 2 sin θ.

θ r = 1 + 2 sin(θ) Polar Point

0 1 (1, 0)

0 to π
2 r increases from 1 to 3

π
2 3 (3, π2 )

π
2 to π r decreases from 3 to 1

π 1 (1, π)

π to 7π
6 r decreases from 1 to 0

7π
6 to 3π

2 r decreases from 0 to −1
3π
2 −1 (−1, 3π2 )

3π
2 to 11π

6 r increases from −1 to 0
11π
6 to 2π r increases from 0 to 1

2π 1 (1, 2π)

! = 7$
6

As θ increases from 0 to π
2 , r increases continuously from 1

to 3. So we connect the polar points (1, 0) and (3, π2 ) through
the first quadrant as shown in the leftmost image.

As θ increases from π
2 to π, r decreases from 3 to 1. So

we connect polar points (3, π2 ) and (1, π) through the second
quadrant.

As θ increases from π to 7π
6 , r decreases from 1 to 0. So

we connect polar points (1, π) and (0, 7π6 ) through the third
quadrant as shown in the rightmost image.

! = 7$
6

As θ increases from 7π
6 to 3π

2 , r decreases from 0 to −1.

Since the point (−1, 3π2 ) is equivalent to the point (1, π2 ), we know we are connecting
the points (0, 7π6 ) and (1, π2 ). But how?

Since r is negative between θ = 7π
6 and θ = 3π

2 , the points we plot for this interval of θ
will not actually lie in the third quadrant; they will lie in the first quadrant as indicated
in the image. The magnitude of r tells us how far to plot the points from the origin; the
negative sign attached to r tells us to plot the points on the “other side of the origin”.

We connect the points (0, 7π6 ) and (1, π2 ) through the first quadrant as shown.

! = 11$
6

As θ increases from 3π
2 to 11π

6 , r increases from −1 to 0.

Since the point (−1, 3π2 ) is equivalent to the point (1, π2 ), we know we are connecting
the points (1, π2 ) and (0, 11π6 ). But how?

Since r is negative between θ = 3π
2 and θ = 11π

6 , the points we plot for this interval of θ
will not actually lie in the fourth quadrant; they will lie in the second quadrant as
indicated in the image.

We connect the points (1, π2 ) and (0, 11π6 ) through the second quadrant as shown.

! = 11$
6

Finally, we finish the sketch for θ between 11π
6 and 2π, where

r increases from 0 to 1.

Since the function cos θ repeats with period 2π, plotting
points for more values of θ will just result in drawing this
same curve over again.

The completed graph is shown on the right.
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