Answers to Practice Set Number 3

Pascal

1) E
2) D
3) D
4) A
5) C
6) C
7) E
8) B
9) B 10) E

Cayley

1) C
2) E 3) C
3) E
4) B
5) C
6) C
7) A
8) D
9) B

Fermat

1) D
2) E
3) B
4) B
5) C
6) C
7) A
8) E
9) A
10) A

Hints, suggestions, and some solutions:

Pascal

1. $\left(\frac{6}{5}\right)\left(\frac{7}{6}\right)\left(\frac{8}{7}\right)=\left(\frac{8}{5}\right)$.
2. Since the three angles add to $180,2 b+b+3 b=180$ and $b=30$. So $3 b=90$ and we have a right triangle.
3. Trial and error shows the numbers are $45,47,49$.
4. Since most of these cancel in pairs we just add $24+25+26 \ldots+31$. These 8 integers average $(24+31) / 2$ and so the total is $4 \times 55=220$.
5. Think of the suits as 100 groups of 2 expensive and 1 cheap suit. The average of each group is $(24+31) / 2$ and so the total is $4 \times 55=220$.

6 . The numerator must be increased by 1700 .
7. The area is an a by b rectangle plus a triangle of height $c-a$ and base b. The area is $a b+a(c-b) / 2=a b / 2+a c / 2=a(b+c) / 2$.
8. The areas of triangles with the same altitudes are in the same ratio as their bases. So if the required area is A then $\frac{A}{54}=\frac{12}{36}$ and $A=18$.
9. If the distance is D then $\frac{D}{60}-\frac{D}{100}=2$ and $D=300$. So the required speed is $\frac{300}{4}=75 \mathrm{~km} / \mathrm{h}$.
10. Join E to the midpoint M and $A C$. Then the triangle $C E M$ is equilateral of side 1 and triangle $E M A$ has a 120 angle at M and $M A=M E=1$. Bisect angle M in the triangle to form two 30-60-90 triangles. Using the ratio of the sides of a 30-60-90 triangle $A E=2\left(\frac{\sqrt{3}}{2}\right)$.

Cayley

1. The answer is approximately $14 \times 365 \times 24 \times 60 \times 60 / 1000000=400$.
2. The perimeter is just the same as a 9 by 27 rectangle!
3. Using the standard formula $2(8 x 15+4 x 15+8 x 4)$.
4. $x+47=2(25)$ and $11+y=28$ so $x+y=20$.
5. Solve $32 x+72(25-x)=64(25)$.
6. Since the correct answer involves multiplying and then adding 5 the error must involve reversing these operations. So $x=5$ and the correct answer is $95+5=100$.
7. Divide the area into two semicircles around a rectangle!
8. Only decimals in lowest terms whose denominators involve only powers of 2 and 5 terminate. But $144=9 \times 16$ so $\frac{9}{144}=\frac{1}{16}$ is the first terminating decimal.
9. First $C Z=6, B Y=k$ and $C Y=8-k$. Using Pythagoras

$$
P A^{2}+P B^{2}+P C^{2}=P X^{2}+9+P Y^{2}+k^{2}+P Z^{2}+36=P X^{2}+25+P Y^{2}+(8-k)^{2}+P Z^{2}+4
$$

Thus $16 k=48$ and $k=3$.
10. $2004=2 \times 2 \times 3 \times 167$. Let $n=k^{2}$ and $n+2004=m^{2}$ so $m^{2}-k^{2}=2004 \Rightarrow(m+k)(m-k)=2004$. But $m+k$ and $m-k$ must have same parity and so must be even. So $\{m+k=2(501)$ and $m-k=2(1)\}$ or $\{m+k=2(167)$ and $m-k=2(3)\}$. Thus $k=500$ or 164 , leading to just 2 values for n.

Fermat

1. Since the triangle is scalene the best we can do is $75,74,31$.
2. A little arithmetic shows that for a, b, c and d to be integers a must be a multiple of 9 .
3. $(a-b)^{2}=a^{2}+b^{2}-2 a b=9$.
4. $432=16 \times 27$. Since 16 is a perfect square we need only make 27 one also.
5. Since the ratio $16: 24=24: 36=2: 3$ the triangles are similar and their areas are in ratio $4: 9$.
6. The number ' $d d d$ ' has a factor $111=3 \times 37$. So 37 must be one number. The other is $9 \times 3=27$ and indeed $27 \times 37=999$.
7. Using sum and product $a b=b$ and $-a=a+b$. Since there are two roots, a and b are not zero so solving these equations $a=1$ and $b=-2$.
8. The areas are:
a) 12.25
b) 12
c) 12
d) $4 \sqrt{5}$
e) $\frac{9}{2} \pi$
9. Since $30^{30}=2^{30} \cdot 3^{30} \cdot 5^{30}$ and perfect squares have even exponents the answer is $16 \times 16 \times 16$.
10. Note triangle $A B C$ is a $30,60,90$ triangle! Let the other point of circle intersection be D. The required area is then sector $A C D$ plus sector $B C D$ minus twice triangle $A B C$.
Since the sector angles are 60 and 120 we get $\frac{1}{3}(3 \pi)+\frac{1}{6}(9 \pi)=2\left(\frac{1}{2} 3 \sqrt{3}\right)=\frac{5}{2} \pi-3 \sqrt{3}$.
