Answers to Practice Set Number 2

Pascal

1) C
2) E
3) D
4) D
5) C
6) B
7) E
8) E
9) D
10) D

Cayley

1) D 2) B
2) C
3) D
4) E
5) B
6) B
7) E
8) C
9) C

Fermat

1) E
2) E
3) E
4) A
5) C
6) B
7) E
8) B
9) C
10) E

Hints, suggestions, and some solutions:

Pascal

1. Since the perimeter is 64,32 posts are required.
2. Watch for the reversal! You are not asked to 1.8% of 540 .
3. Simply add $\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{6}$.
4. The midpoint is on the x axis and so its y-coordinate is 0 . Since this number is the average of the y coordinates of the end points $y=-4$.
5. Change the given ratios to $10: 15$ and $15: 24$ so that " y " is represented by the same quantity!
6. The left side $=3\left(3^{10}\right)=3^{10+1}$.
7. Since $V=L W H$, the new volume is (1.2) $L(1.2) W(1.2) H=1.728 \mathrm{~V}$.
8. Look at the areas above and below $B D$ separately. When determine the area of unusual shapes, sometimes it helps to look for what isn't there.
9. Look at the prime factorization of 1872.
10. Count the triangles outward from vertex A. Do the same from vertex B but beware of the double counting.

Cayley

1. $x^{2}-y^{2}=4-25=-21$.
2. The intercepts of the line are 18 and -10 so the area is 90 .
3. The area of the parallelogram is the rectangle's area minus that of the 4 triangles such as $A X Y$. The area of each of the 4 triangles is $\left(\frac{1}{2}\right)\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)=\frac{1}{9}$ of the rectangles area. Therefore the parallelogram has area $\frac{5}{9}$ of the rectangle.
4. We have $(a-b) x=a^{2}-b^{2}=(a-b)(a+b)$. So since $a-b \neq 0, x=a+b$.
5. Equating the left sides (since both are 1) we find that $x=y$. Substituting this into either equation $\left(\frac{5}{12}\right) x=1$ and $x=2.4=y$.
6. The area of the triangle is one-half that of the parallelogram wherever we place the 4 th vertex (there are three possibilities). But triangle $A B C$ is right-angled (check slopes). Its area is $\left(\frac{1}{2}\right)(10)(10)=50$.
7. Since $27^{27}=\left(3^{3}\right)^{27}=3^{81}$, we have $3\left(3^{81}\right)=3^{82}$.
8. The numbers $7,8,9$ have the divisibility properties but are too small. The next set of numbers are $7 \times 8 \times 9=504$ greater, and are $511,512,513$.
9. Consider the reflection of $C(8,3)$ in the x-axis to $D(8,-3)$. The distance $B C=B D$ since B is on the x-axis. So $A B+B C=A B+B D$. But the distance $A B+B D$ is minimal when $A D$ is straight. So just find the x intercept of $A D$, the line $y=-x+5$.
10. The required figure is the diamond shape with vertices $(10,0),(0,10),(-10,0)$ and $(0,-10)$. The number of points in each quadrant (not on the axes) is $1+2+3+\cdots 99=4950$. There are 401 points on the axes.

Fermat

1. $(-10)^{2}=100$.
2. If $x+y=5 k, y+z=11 k$ and $z+x=12 k$, adding gives $2(x+y+z)=28 k$. So $x=14 k-11 k=3 k$ etc.
3. Since $28=2^{2} \cdot 7$ we require $A=2 \cdot 7^{2}=98$.
4. First $n=2$. Then $35+2=15$ so $m=-10$. Then $p=-50$.
5. Triangle $A C O$ has sides in the ratio $1: 1: \sqrt{2}$.
6. Use $(x+y)^{2}=x^{2}+y^{2}+2 x y$!
7. $B D: D C=27: 18=3: 2$. So the areas $|\triangle A B D|:|\triangle A C D|=3: 2$. Therefore the area of $P A B$ is 90.
8. Multiplying gives $a^{5} b^{5}=72 \cdot 108=2^{5} \cdot 3^{5}$.
9. Using N, D, Q to represent the number of nickels, dimes and quarters we have $N+D+Q=110$ and $5 N+10 D+25 Q=1000$. Multiplying the first by 10 and subtracting we get $N=20+3 Q$. Substituting this back $D=90-4 Q$. So $Q=0,1,2, \ldots, 22$.
10. There are three cases
i) Exponent 0 and base non-zero.
ii) Base equaling 1
iii) Base equaling -1 and exponent even.

Each case gives 2 solutions.

