Answers to Practice Set Number 2

Pascal 2) E 1) C 3) D 4) D 5) C 6) B 7) E 8) E 10) D 9) D Cayley 2) B 3) C 1) D 4) D 5) E 6) B 7) B 8) E 9) C 10) C Fermat 1) E 2) E 3) E 4) A 5) C 6) B 7) E 8) B 9) C 10) E

Hints, suggestions, and some solutions:

Pascal

- 1. Since the perimeter is 64, 32 posts are required.
- 2. Watch for the reversal! You are not asked to 1.8% of 540.
- 3. Simply add $\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$.
- 4. The midpoint is on the x axis and so its y-coordinate is 0. Since this number is the average of the y coordinates of the end points y = -4.
- 5. Change the given ratios to 10:15 and 15:24 so that "y" is represented by the same quantity!
- 6. The left side $= 3(3^{10}) = 3^{10+1}$.
- 7. Since V = LWH, the new volume is (1.2)L(1.2)W(1.2)H = 1.728V.
- 8. Look at the areas above and below BD separately. When determine the area of unusual shapes, sometimes it helps to look for what isn't there.
- 9. Look at the prime factorization of 1872.
- 10. Count the triangles outward from vertex A. Do the same from vertex B but beware of the double counting.

Cayley

- 1. $x^2 y^2 = 4 25 = -21$.
- 2. The intercepts of the line are 18 and -10 so the area is 90.
- 3. The area of the parallelogram is the rectangle's area minus that of the 4 triangles such as AXY. The area of each of the 4 triangles is $\left(\frac{1}{2}\right)\left(\frac{1}{3}\right)\left(\frac{2}{3}\right) = \frac{1}{9}$ of the rectangles area. Therefore the parallelogram has area $\frac{5}{9}$ of the rectangle.
- 4. We have $(a b)x = a^2 b^2 = (a b)(a + b)$. So since $a b \neq 0, x = a + b$.

- 5. Equating the left sides (since both are 1) we find that x = y. Substituting this into either equation $\left(\frac{5}{12}\right)x = 1$ and x = 2.4 = y.
- 6. The area of the triangle is one-half that of the parallelogram wherever we place the 4th vertex (there are three possibilities). But triangle ABC is right-angled (check slopes). Its area is $\left(\frac{1}{2}\right)(10)(10) = 50$.
- 7. Since $27^{27} = (3^3)^{27} = 3^{81}$, we have $3(3^{81}) = 3^{82}$.
- 8. The numbers 7, 8, 9 have the divisibility properties but are too small. The next set of numbers are $7 \times 8 \times 9 = 504$ greater, and are 511, 512, 513.
- 9. Consider the reflection of C(8,3) in the x-axis to D(8,-3). The distance BC = BD since B is on the x-axis. So AB + BC = AB + BD. But the distance AB + BD is minimal when AD is straight. So just find the x intercept of AD, the line y = -x + 5.
- 10. The required figure is the diamond shape with vertices (10,0), (0,10), (-10,0) and (0,-10). The number of points in each quadrant (not on the axes) is $1 + 2 + 3 + \cdots 99 = 4950$. There are 401 points on the axes.

Fermat

- 1. $(-10)^2 = 100.$
- 2. If x + y = 5k, y + z = 11k and z + x = 12k, adding gives 2(x + y + z) = 28k. So x = 14k 11k = 3k etc.
- 3. Since $28 = 2^2 \cdot 7$ we require $A = 2 \cdot 7^2 = 98$.
- 4. First n = 2. Then 35 + 2 = 15 so m = -10. Then p = -50.
- 5. Triangle ACO has sides in the ratio $1:1:\sqrt{2}$.
- 6. Use $(x+y)^2 = x^2 + y^2 + 2xy!$
- 7. BD: DC = 27: 18 = 3: 2. So the areas $|\triangle ABD|: |\triangle ACD| = 3: 2$. Therefore the area of PAB is 90.
- 8. Multiplying gives $a^5b^5 = 72 \cdot 108 = 2^5 \cdot 3^5$.
- 9. Using N, D, Q to represent the number of nickels, dimes and quarters we have N + D + Q = 110and 5N + 10D + 25Q = 1000. Multiplying the first by 10 and subtracting we get N = 20 + 3Q. Substituting this back D = 90 - 4Q. So Q = 0, 1, 2, ..., 22.
- 10. There are three cases
 - i) Exponent 0 and base non-zero.
 - ii) Base equaling 1
 - iii) Base equaling -1 and exponent even.

Each case gives 2 solutions.