Practice Fermat Number 3

1. The largest angle in a scalene triangle is 75°. The other 2 angles, when measured in degrees, are integers. Determine the smallest possible value of the smallest angle in the triangle, in degrees
a) 29
b) 1
c) 15
d) 31
e) 59
2. Four positive integers, a, b, c and d satisfy the relations $5 a=3 b, 2 b=3 c$ and $2 c=d$. The smallest possible sum $a+b+c+d$ is:
a) 24
b) 36
c) 52
d) 64
e) 54
3. If $a^{2}+b^{2}=89$ and $a b=40$ a possible value for $a-b$ is:
a) 2
b) 3
c) 5
d) 8
e) 13
4. The smallest integer N so that the product of 432 and N is a perfect square is
a) 2
b) 3
c) 6
d) 12
e) 48
5. Triangle $A B C$ has $A B=24$ and $A C=36$. Points D and E are chosen on $A C$ and $A B$ respectively so that $A D=24$ and $A E=16$. What is the ratio of the area of $\triangle A E D$ to the area of $\triangle A B C ?$
a) $2: 3$
b) $3: 7$
c) $4: 9$
d) $5: 13$
e) $6: 17$
6. If a, b, c, and d are digits and " $a b " \times " c b "=$ " $d d d$ " determine the sum " $a b "+" c b$ ". (Note: " $a b$ " is the 2 digit number with digits a and b.)
a) 49
b) 52
c) 64
d) 72
e) 80
7. There are integer values of a and b such that the quadratic equation $x^{2}+a x+b=0$ has distinct roots a and b. Determine $a+b$
a) -1
b) 0
c) 1
d) 2
e) 3
8. Which of the following has the largest area?
a) A square of side 3.5 .
b) A rectangle of length 4 and width 3 .
c) A triangle with sides 5,5 and 6 .
d) A trapezoid with sides $3,2,3$ and 6 where the parallel sides are of length 2 and 6 .
e) A semicircle of radius 3
9. Determine the number divisors of 30^{30} that are perfect squares, including 1 and the number itself.
a) 4096
b) 3375
c) 29791
d) 1024
e) 900
10. Two circles intersect perpendicularly. In other words, if C is a point of intersection and A and B are the centres of the 2 circles, then the radii $A C$ and $B C$ are perpendicular to each other. If the radii of the circles are 3 and $\sqrt{3}$ what is their area of overlap?

a) $\frac{5}{2} \pi-3 \sqrt{3}$
b) $\frac{7}{2} \pi-4 \sqrt{3}$
c) $\frac{9}{2} \pi-5 \sqrt{3}$
d) $\frac{5}{2} \pi-2 \sqrt{3}$
e) $\frac{7}{2} \pi-3 \sqrt{3}$
