Trigonometry

Toolkit

Name	Formula
Sine Law	$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R$, where R is the radius of the circumcircle.
Cosine Law	$\begin{aligned} & a^{2}=b^{2}+c^{2}-2 b c \cos A \\ & b^{2}=a^{2}+c^{2}-2 a c \cos B \\ & c^{2}=b^{2}+a^{2}-2 a b \cos C \end{aligned}$
Area relations	The area of triangle $A B C$ is $\frac{1}{2} a b \sin C=\frac{1}{2} b c \sin A=\frac{1}{2} a c \sin B$.
General Identities	$\begin{aligned} & \cot \theta=\frac{1}{\tan \theta}, \quad \sec \theta=\frac{1}{\cos \theta}, \quad \csc \theta=\frac{1}{\sin \theta} \\ & \tan \theta=\frac{\sin \theta}{\cos \theta}, \quad \cot \theta=\frac{\cos \theta}{\sin \theta} \\ & \sin (-\theta)=-\sin \theta, \quad \cos (-\theta)=\cos \theta, \quad \tan (-\theta)=-\tan \theta \end{aligned}$
Pythagorean Identities	$\sin ^{2} \theta+\cos ^{2} \theta=1, \quad \tan ^{2} \theta+1=\sec ^{2} \theta, \quad \cot ^{2} \theta+1=\csc ^{2} \theta$
Sum Formulas	$\begin{aligned} & \sin (A+B)=\sin A \cos B+\cos A \sin B \\ & \cos (A+B)=\cos A \cos B-\sin A \sin B \end{aligned}$
Double Angle Formulas	$\begin{aligned} & \sin (2 \theta)=2 \sin \theta \cos \theta \\ & \cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta=2 \cos ^{2} \theta-1=1-2 \sin ^{2} \theta \end{aligned}$

Sample Problems

1. Determine the values of x such that $2 \sin ^{3} x-5 \sin ^{2} x+2 \sin x=0$ given that $0 \leq x \leq 2 \pi$.

Solution

We factor the given equation to obtain

$$
\begin{array}{r}
\sin x\left(2 \sin ^{2} x-5 \sin x+2\right)=0 \\
\sin x(2 \sin x-1)(\sin x-2)=0
\end{array}
$$

So $\sin x=0, \frac{1}{2}$ or 2 . But $|\sin x| \leq 1$. So $\sin x \neq 2$. Therefore, in the interval $0 \leq x \leq 2 \pi$, we have $x=0, \pi, 2 \pi, \frac{\pi}{6}$ or $\frac{5 \pi}{6}$.
2. An airplane leaves an aircraft carrier and flies due south at $400 \mathrm{~km} / \mathrm{hr}$. The carrier proceeds at a heading of 60° west of north at $32 \mathrm{~km} / \mathrm{hr}$. If the plane has 5 hours of fuel, what is the maximum distance south the plane can travel so that the fuel remaining will allow a safe return to the carrier at $400 \mathrm{~km} / \mathrm{hr}$?

Solution

The first step in solving this problem is to draw a diagram (as shown). If we let x be the number of hours that the plane flies south, then the distance that the plane flies south is $400 x$. The plane then flies a distance $400(5-x)$ in the remaining time, while the total distance the carrier travels is $5(32)=160$. Using these distances, the cosine law gives us

$$
(400(5-x))^{2}=160^{2}+(400 x)^{2}-2 \cdot 160 \cdot 400 x \cdot \cos 120^{\circ} .
$$

Simplifying we obtain

$$
4000000-1600000 x+160000 x^{2}=25600+160000 x^{2}+64000 x
$$

which we can solve to get $x=\frac{621}{260}$. Thus, the maximum distance the plane should travel south is $400\left(\frac{621}{260}\right)=\frac{12420}{13} \mathrm{~km}$, which is approximately 955.4 km .
3. In triangle $A B C$, the point D is on $B C$ such that $A D$ bisects $\angle A$. Show that $\frac{A B}{B D}=\frac{A C}{C D}$.

Solution

We call $\angle A D C=\theta$ and $\angle B A C=\alpha$. We use the sine law in triangles $A D C$ and $A D B$ to obtain $\frac{\sin \frac{\alpha}{2}}{\sin \theta}=\frac{C D}{A C}$ and $\frac{\sin \frac{\alpha}{2}}{\sin \left(180^{\circ}-\theta\right)}=\frac{B D}{A B}$. But $\sin \theta=\sin \left(180^{\circ}-\theta\right)$ and so $\frac{A B}{B D}=\frac{A C}{C D}$. This result is known as the angle bisector theorem.
4. For the given triangle $A B C, \angle C=\angle A+60^{\circ}$. If $B C=1, A C=r$ and $A B=r^{2}$, where $r>1$, prove that $r<\sqrt{2}$.

Solution

We represent the angles of the triangle as: $\angle A=\alpha, \angle C=\alpha+60^{\circ}$, and $\angle B=120^{\circ}-2 \alpha$. So the sine law states

$$
\begin{aligned}
\frac{r^{2}}{1} & =\frac{\sin \left(\alpha+60^{\circ}\right)}{\sin \alpha} \\
& =\frac{\sin \alpha \cos 60^{\circ}+\cos \alpha \sin 60^{\circ}}{\sin \alpha} \\
& =\frac{1}{2}+\frac{\sqrt{3}}{2} \cot \alpha
\end{aligned}
$$

Since all three angles in the triangle are positive, we can see that $0<\alpha<60^{\circ}$. In this range, the tangent function is increasing, and its reciprocal, the cotangent function, is decreasing.

The cosine law gives

$$
r^{2}=1+r^{4}-2 r^{2} \cos \left(120^{\circ}-2 \alpha\right)
$$

But $r>1$ and so

$$
\left(r^{2}-1\right)^{2}>0 \text { or } r^{4}+1>2 r^{2}
$$

Substituting the second inequality into the equation gives $r^{2}>2 r^{2}-2 r^{2} \cos \left(120^{\circ}-2 \alpha\right)$ which implies $\cos \left(120^{\circ}-2 \alpha\right)>\frac{1}{2}$. Thus, $\alpha>30^{\circ}$ and

$$
r^{2}=\frac{1}{2}+\frac{\sqrt{3}}{2} \cot \alpha<\frac{1}{2}+\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{1}=2
$$

Thus, $r^{2}<2$ and so $r<\sqrt{2}$.

Problem Set

1. (a) If $2 \sin (2 \theta)+1=0$, find the smallest positive value of θ (in degrees).
(b) For $-\pi \leq \theta \leq \pi$, find all solutions to the equation $2\left(\sin ^{2} \theta-\cos ^{2} \theta\right)=8 \sin \theta-5$.
2. In $\triangle A B C, M$ is a point on $B C$ such that $B M=5$ and $M C=6$. If $A M=3$ and $A B=7$, determine the exact value of $A C$.

3. In determining the height, $M N$, of a tower on an island, two points A and $B, 100 \mathrm{~m}$ apart, are chosen on the same horizontal plane as N. If $\angle N A B=108^{\circ}, \angle A B N=47^{\circ}$ and $\angle M B N=32^{\circ}$, determine the height of the tower to the nearest metre.

4. A rectangle $P Q R S$ has side $P Q$ on the x-axis and touches the graph of $y=k \cos x$ at the points S and R as shown. If the length of $P Q$ is $\frac{\pi}{3}$ and the area of the rectangle is $\frac{5 \pi}{3}$, what is the value of k ?

5. The graph of the equation $y=a \sin k x$ is shown in the diagram, and the point $\left(\frac{3 \pi}{4},-2\right)$ is the minimum point indicated. The line $y=1$ intersects the graph at point D. What are the coordinates of D ?

6. A square with an area of $9 \mathrm{~cm}^{2}$ is surrounded by four congruent triangles, forming a larger square with an area of $89 \mathrm{~cm}^{2}$. If each of the triangles has an angle θ as shown, find the value of $\tan \theta$.

7. A rectangular box has a square base of length 1 cm , and height $\sqrt{3} \mathrm{~cm}$ as shown in the diagram. What is the cosine of angle $F A C$?

8. In the grid, each small equilateral triangle has side length 1 . If the vertices of $\triangle W A T$ are themselves vertices of small equilateral triangles, what is the area of $\triangle W A T$?

9. In $\triangle A B C, A B=8$, and $\angle C A B=60^{\circ}$. Sides $B C$ and $A C$ have integer lengths a and b, respectively. Find all possible values of a and b.
