Exponents and Logarithms

Toolkit

Exponents

Let a, b, x, and y be real numbers and let n be an integer with $n \geq 2$. The rules for exponents are

- $a^{\frac{1}{n}}=\sqrt[n]{a}$
- $a^{0}=1$, if $a \neq 0$
- $a^{-x}=\frac{1}{a^{x}}$, if $a \neq 0$
- $a^{x} a^{y}=a^{x+y}$
- $\frac{a^{x}}{a^{y}}=a^{x-y}$, if $a \neq 0$
- $\left(a^{x}\right)^{y}=a^{x y}$
- $a^{x} \cdot b^{x}=(a b)^{x}$
- $\frac{a^{x}}{b^{x}}=\left(\frac{a}{b}\right)^{x}$, if $b \neq 0$

Also, 0^{0} is not defined, if it is encountered using any of the above formulae.

Logarithms

Let x and y be positive real numbers. Let a be a positive real number with $a \neq 1$. The equation $y=a^{x}$ is equivalent to $\log _{a} y=x$. The rules for logarithms are

- $\log _{a} 1=0$
- $\log _{a} a=1$
- $\log _{a}(x y)=\log _{a} x+\log _{a} y$
- $\log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y$
- $\log _{a}\left(x^{y}\right)=y \log _{a} x$
- $\log _{a}\left(a^{x}\right)=x$
- $a^{\log _{a} x}=x$
- $\log _{a} x=\frac{1}{\log _{x} a}$, where $x \neq 1$
- $\log _{y} x=\frac{\log _{a} x}{\log _{a} y}$

Sample Problems

1. Given $2 \log _{5}(x-3 y)=\log _{5}(2 x)+\log _{5}(2 y)$, calculate the ratio $\frac{x}{y}$.

Solution

First, we note that in the original equation, if the three logarithmic terms are to be defined, then their arguments must be positive. So $x>0, y>0$, and $x>3 y$. Now

$$
\begin{aligned}
2 \log _{5}(x-3 y) & =\log _{5}(2 x)+\log _{5}(2 y) \\
\log _{5}(x-3 y)^{2} & =\log _{5}(4 x y) .
\end{aligned}
$$

Now since the log function takes on each value in its range only once, we have that

$$
\begin{aligned}
(x-3 y)^{2} & =4 x y \\
x^{2}-6 x y+9 y^{2} & =4 x y \\
x^{2}-10 x y+9 y^{2} & =0 \\
(x-y)(x-9 y) & =0
\end{aligned}
$$

So $\frac{x}{y}=1$ or $\frac{x}{y}=9$. But from our restrictions we know that $\frac{x}{y}>3$, and so $\frac{x}{y}=9$.
2. Given that m and k are integers, find all values of m and k satisfying the equation

$$
9\left(7^{k}+7^{k+2}\right)=5^{m+3}+5^{m}
$$

Solution

We factor both sides of this equation to arrive at

$$
\begin{aligned}
9\left(1+7^{2}\right) 7^{k} & =5^{m}\left(1+5^{3}\right) \\
9(50) 7^{k} & =5^{m}(126) \\
3^{2} \cdot 2 \cdot 5^{2} \cdot 7^{k} & =5^{m} \cdot 2 \cdot 3^{2} \cdot 7
\end{aligned}
$$

Now since both sides of this equation are products of primes, and integers have unique prime factorizations, it follows that $m=2$ and $k=1$ is the only solution.
3. Determine the points of intersection of the curves $y=\log _{10}(x-2)$ and $y=1-\log _{10}(x+1)$.

Solution

Again the arguments of the logarithmic functions, $x-2$ and $x+1$, must be positive, which implies that $x>2$. Now

$$
\begin{aligned}
\log _{10}(x-2) & =1-\log _{10}(x+1) \\
\log _{10}(x-2)+\log _{10}(x+1) & =1 \\
\log _{10}[(x-2)(x+1)] & =1 \\
(x-2)(x+1) & =10 \\
x^{2}-x-2 & =10 \\
x^{2}-x-12 & =0 \\
(x-4)(x+3) & =0
\end{aligned}
$$

So $x=4$ or $x=-3$, but from our restriction $x>2$ and so $x=4$. The point of intersection is $\left(4, \log _{10} 2\right)$ or $\left(4,1-\log _{10} 5\right)$. Since $\log _{10} 2+\log _{10} 5=1$, these are equivalent answers.
4. Determine all values of x such that $\log _{2}\left(9-2^{x}\right)=3-x$.

Solution

Once again the argument of the logarithm must be positive, implying that $9>2^{x}$.

$$
\begin{aligned}
\log _{2}\left(9-2^{x}\right) & =3-x \\
9-2^{x}=2^{3-x} & =\frac{8}{2^{x}}
\end{aligned}
$$

Substituting $y=2^{x}$ we have

$$
\begin{aligned}
9-y & =\frac{8}{y} \\
y^{2}-9 y+8 & =0 \\
(y-1)(y-8) & =0
\end{aligned}
$$

Thus, $y=1$ or $y=8$. Since $y=2^{x}$, we obtain the corresponding values $x=0$ or $x=3$. Both of these values satisfy the restriction $9>2^{x}$ and so both are valid solutions.
5. The graph of $y=m^{x}$ passes through the points $(2,5)$ and $(5, n)$. What is the value of $m n$?

Solution

From the given information we have that $m^{2}=5$ and $n=m^{5}$. Thus, $m= \pm \sqrt{5}$ with corresponding values $n=(\pm \sqrt{5})^{5}$. Therefore, $m n=(\sqrt{5})^{6}=125$.

Problem Set

1. Determine the values of x such that $\log _{x} 2+\log _{x} 4+\log _{x} 8=1$.
2. Determine the values of x such that $12^{2 x+1}=2^{3 x+7} \cdot 3^{3 x-4}$.
3. What is the sum of the following series?

$$
\log _{10} \frac{3}{2}+\log _{10} \frac{4}{3}+\log _{10} \frac{5}{4}+\cdots+\log _{10} \frac{200}{199}
$$

4. Given that $x^{3} y^{5}=2^{11} \cdot 3^{13}$ and $\frac{x}{y^{2}}=\frac{1}{27}$, solve for x and y.
5. Given that $\log _{8} 3=k$, express $\log _{8} 18$ in the form $a k+b$ where a and b are rational numbers.
6. Determine the point(s) of intersection of the graphs of $y=\log _{2}(2 x)$ and $y=\log _{4} x$.
7. The points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ lie on the graph of $y=\log _{a} x$. A horizontal line is drawn through the midpoint of $A B$ such that it intersects the curve at the point $C\left(x_{3}, y_{3}\right)$. Show that $\left(x_{3}\right)^{2}=x_{1} x_{2}$.
8. The graph of the function $y=a x^{r}$ passes through the points $(2,1)$ and $(32,4)$. Calculate the value of r.
9. Given that $2^{x+3}+2^{x}=3^{y+2}-3^{y}$ and x and y are integers, determine the values of x and y.
10. Given that $f(x)=2^{4 x-2}$, calculate, in simplest form, $f(x) \cdot f(1-x)$.
11. Find all values of x such that $\log _{5}(x-2)+\log _{5}(x-6)=2$.
12. Let x be a positive real number with $x \neq 1$. Prove that a, b, and c are three numbers that form a geometric sequence if and only if $\log _{x} a, \log _{x} b$ and $\log _{x} c$ form an arithmetic sequence.
13. Determine all real values of x for which

$$
3^{x+2}+2^{x+2}+2^{x}=2^{x+5}+3^{x}
$$

14. Determine all real numbers x for which

$$
\left(\log _{10} x\right)^{\log _{10}\left(\log _{10} x\right)}=10000
$$

15. Determine all real numbers $x>0$ for which

$$
\log _{4} x-\log _{x} 16=\frac{7}{6}-\log _{x} 8
$$

