
2012
Canadian
Computing
Competition:
Senior
Division
Sponsor:

1

Canadian Computing Competition
Student Instructions for the Senior Problems

1. You may only compete in one competition. If you wish to write the Junior paper, see the
other problem set.

2. Be sure to indicate on your Student Information Form that you are competing in the Senior
competition.

3. You have three (3) hours to complete this competition.

4. You should assume that

• all input is from a file named sX.in, where X is the problem number (1 ≤ X ≤ 5).

• all output is to the screen

Since your program will read from a file, there is no need for prompting. Be sure your output
matches the expected output in terms of order, spacing, etc. IT MUST MATCH EXACTLY!

5. Do your own work. Cheating will be dealt with harshly.

6. Do not use any features that the judge (your teacher) will not be able to use while evaluating
your programs.

7. Books and written materials are allowed. Any machine-readable materials (like other pro-
grams which you have written) are not allowed. However, you are allowed to use “stan-
dard” libraries for your programming languages; for example, the STL for C++, java.util.*,
java.io.*, etc. for Java, and so on.

8. Applications other than editors, compilers, debuggers or other standard programming tools
are not allowed. Any use of other applications will lead to disqualification.

9. Please use file names that are unique to each problem: for example, please use s1.pas or
s1.c or s1.java (or some other appropriate extension) for Problem S1. This will make
the evaluator’s task a little easier.

10. Your program will be run against test cases other than the sample ones. Be sure you test
your program on other test cases. Inefficient solutions may lose marks for some problems,
especially Problems 4 and 5. Be sure your code is as efficient (in terms of time) as possible.

11. Note that the top 2 Senior competitors in each region of the country will get a plaque and
$100, and the schools of these competitors will also get a plaque. The regions are:

• West (BC to Manitoba)

• Ontario North and East

• Metro Toronto area

2

• Ontario Central and West

• Quebec and Atlantic

12. If you finish in the top 20 competitors on this competition, you will be invited to participate
in CCC Stage 2, held at the University of Waterloo in May 2012. We will select the Canadian
International Olympiad in Informatics (IOI) team from among the top contestants at Stage
2. You should note that IOI 2012 will be held in Italy. Note that you will need to know C,
C++ or Pascal if you are invited to Stage 2. But first, do well on this contest!

13. Check the CCC website at the end of March to see how you did on this contest, and to see
who the prize winners are. The CCC website is:

www.cemc.uwaterloo.ca/ccc

3

Problem S1: Don’t pass me the ball!

Problem Description
A CCC soccer game operates under slightly different soccer rules. A goal is only counted if the
4 players, in order, who touched the ball prior to the goal have jersey numbers that are in strictly
increasing numeric order with the highest number being the goal scorer.

Players have jerseys numbered from 1 to 99 (and each jersey number is worn by exactly one
player).

Given a jersey number of the goal scorer, indicate how many possible combinations of players can
produce a valid goal.

Input Specification
The input will be the positive integer J (1 ≤ J ≤ 99), which is the jersey number of the goal
scorer.

Output Specification
The output will be one line containing the number of possible scoring combinations that could
have J as the goal scoring jersey number.

Sample Input 1
4

Output for Sample Input 1
1

Sample Input 2
2

Output for Sample Input 2
0

Sample Input 3
90

Output for Sample Input 3
113564

4

Problem S2: Aromatic Numbers
Problem Description

This question involves calculating the value of aromatic numbers which are a combination of
Arabic digits and Roman numerals.

An aromatic number is of the form ARARAR . . . AR, where each A is an Arabic digit, and each
R is a Roman numeral. Each pair AR contributes a value described below, and by adding or
subtracting these values together we get the value of the entire aromatic number.

An Arabic digit A can be 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9. A Roman numeral R is one of the seven
letters I, V, X, L, C, D, or M. Each Roman numeral has a base value:

Symbol I V X L C D M
Base value 1 5 10 50 100 500 1000

The value of a pair AR is A times the base value of R. Normally, you add up the values of the
pairs to get the overall value. However, wherever there are consecutive symbols ARA′R′ with R′

having a strictly bigger base value than R, the value of pair AR must be subtracted from the total,
instead of being added.

For example, the number 3M1D2C has the value 3 ∗ 1000 + 1 ∗ 500 + 2 ∗ 100 = 3700 and 3X2I4X
has the value 3 ∗ 10− 2 ∗ 1 + 4 ∗ 10 = 68.

Write a program that computes the values of aromatic numbers.

Input Specification
The input is a valid aromatic number consisting of between 2 and 20 symbols.

Output Specification
The output is the decimal value of the given aromatic number.

Sample Input 1
3M1D2C

Output for Sample Input 1
3700

Sample Input 2
2I3I2X9V1X

Output for Sample Input 2
-16

5

Problem S3: Absolutely Acidic
Problem Description
You are gathering readings of acidity level in a very long river in order to determine the health of
the river. You have placed N sensors (2 ≤ N ≤ 2 000 000) in the river, and each sensor gives an
integer reading R (1 ≤ R ≤ 1 000). For the purposes of your research, you would like to know
the frequency of each reading, and find the absolute difference between the two most frequent
readings.

If there are more than two readings that have the highest frequency, the difference computed should
be the largest such absolute difference between two readings with this frequency. If there is only
one reading with the largest frequency, but more than one reading with the second largest fre-
quency, the difference computed should be the largest absolute difference between the most fre-
quently occurring reading and any of the readings which occur with second-highest frequency.

Input Specification
The first line of input will be the integer N (2 ≤ N ≤ 2 000 000), the number of sensors. The
next N lines each contain the reading for that sensor, which is an integer R (1 ≤ R ≤ 1 000). You
should assume that there are at least two different readings in the input.

Output Specification
Output the positive integer value representing the absolute difference between the two most fre-
quently occurring readings, subject to the tie-breaking rules outlined above.

Sample Input 1
5
1
1
1
4
3

Output for Sample Input 1
3

Sample Input 2
4
10
6
1
8

Output for Sample Input 2
9

6

Problem S4: A Coin Game

Problem Description
When she is bored, Jo Coder likes to play the following game with coins on a table. She takes a set
of distinct coins and lines them up in a row. For example, let us say that she has a penny (P, worth
$0.01), a nickel (N, worth $0.05), and a dime (D, worth $0.10). She lines them up in an arbitrary
order, (for example, D N P), and then moves them around with the goal of placing them in strictly
increasing order by value, that is P N D (i.e., $0.01, $0.05, $0.10). She has particular rules that she
follows:

• The initial coin line-up defines all positions where coins can be placed. That is, no additional
positions can be added later, and even if one of the positions does not have a coin on it at
some point, the position still exists.

• The game consists of a sequence of moves and in each move Jo moves a coin from one
position to an adjacent position.

• The coins can be stacked, and in a move Jo always takes the top coin from one stack and
moves it to the top of another stack.

• In a stack of coins, Jo never places a higher-value coin on top of a lower-value coin.

For simplicity, let the coins have consecutive integer values (e.g., denote the penny as 1, nickel as
2, and dime as 3). Then, in the above example, Jo could play the game in the following way in 20
moves (where XY denotes that coin X is on top of coin Y):

Move Position 1 Position 2 Position 3
initial 3 2 1

1 3 12
2 13 2
3 13 2
4 3 1 2
5 3 12
6 3 12
7 13 2
8 1 3 2
9 1 23
10 123

Move Position 1 Position 2 Position 3
11 23 1
12 2 3 1
13 2 13
14 12 3
15 12 3
16 2 1 3
17 2 13
18 2 13
19 12 3
20 1 2 3

For some starting configurations, it is not always possible to obtain the goal of strictly increasing
order.

7

Input Specification
The input will contain some number of test cases. A test case consists of two lines. The first line
contains a positive integer n (n < 8), which is the number of coins. We assume that the coins are
labeled 1, 2, 3, . . . n. The second line contains a list of numbers 1 to n in an arbitrary order, which
represents the initial coin configuration. For the above example, the input test case would be:
3
3 2 1
The end of test cases is indicated by 0 on a line by itself.

Output Specification
For each test case, output one line, which will either contain the minimal number of moves in
which Jo can achieve the goal coin line-up, or, if it is not possible to achieve the goal coin line-up,
IMPOSSIBLE.

Sample Input
3
3 2 1
2
2 1
0

Output for Sample Input
20
IMPOSSIBLE

8

Problem S5: Mouse Journey

Problem Description
You are a mouse that lives in a cage in a large laboratory. The laboratory is composed of one
rectangular grid of square cages, with a total of R rows and C columns of cages (1 ≤ R,C ≤ 25).

To get your exercise, the laboratory owners allow you to move between cages. You can move
between cages either by moving right between two adjacent cages in the same row, or by moving
down between two adjacent cages in the same column. You cannot move diagonally, left or up.

Your cage is in one corner of the laboratory, which has the label (1, 1) (to indicate top-most row,
left-most column). You would like to visit your brother who lives in the cage labelled (R,C)
(bottom-most row, right-most column), which is in the other corner diagonally. However, there are
some cages which you cannot pass through, since they contain cats.

Your brother, who loves numbers, would like to know how many different paths there are between
your cage and his that do not pass through any cat cage. Write a program to compute this number
of cat-free paths.

Input Specification
The first line of input contains two integers R and C, separated by one space representing the
number of rows and columns (respectively). On the second line of input is the integer K, the
number of cages that contain cats. The next K lines each contain the row and column positions (in
that order) for a cage that contains a cat. None of the K cat cages are repeated, and all cages are
valid positions. Note also that (1, 1) and (R,C) will not be cat cages.

Output Specification
Output the non-negative integer value representing the number of paths between your cage at
position (1, 1) and your brother’s cage at position (R,C). You can assume the output will be
strictly less than 1 000 000 000.

Sample Input 1
2 3
1
2 1

Output for Sample Input 1
2

Sample Input 2
3 4
3
2 3
2 1

9

1 4

Output for Sample Input 2
1

10

