2006 Canadian Computing Competition
Day 1, Question 3

Input file: codec.in (for compress), compress.out (for decompress)

Output file: compress.out (for compress), codec.out (for decompress)

Source files: n:\codec\compress.{c, cpp, pas}
n:\codec\decompress.{c, cpp, pas}

Codec

The problem of lossless data compression is to transform some data into a compressed
form such that:

(a) the original can be reproduced exactly from the compressed form.
(b) the compressed form is as small can reasonably be achieved.

You are to write two programs — compress that performs lossless compression and
decompress that reproduces the original data from the compressed form. The data to
be compressed will be plain English text represented using printable ASCII characters (i.e.,
all characters with ASCII values between 32 and 126 inclusive). The compressed form is a
string of binary bits. For convenience, we will represent this string of bits as a character
string containing only 0s and 1s.

compress reads the original data from the file codec.in and writes the compressed form
compress.out. decompress reads the compressed data from a file called compress.out and
writes the corresponding original data to codec.out. Of course, codec.in and codec.out
must be the same file. Pictorially, we have the following flow of information:

compress must output only 0s and 1s and decompress must exactly reverse the effects
of compress. That is, condition (a) above must hold for any English text. If compress and

decompress meet these criteria, your score will be determined by the relative size of the
input and output by

—b
score (as %) = 50 - S¢ ,

C

where c is the total number of characters in the original text and b is the number of bits
in the compressed form. Note that scores may exceed 100%, but scores that are less than 0
will be given 0% (i.e., no negative marks will be given, but bonus marks may be awarded).

Discussion and Hints

It is well known that any ASCII character can be represented using 8§ bits. Such a
representation would achieve a score of 0 using the formula above. Since there are fewer
than 128 possible symbols in the input, it is possible to represent each one with 7 bits. Such
a representation would receive a score of at least 50%.

A smaller representation can be achieved, with high probability, by observing that some
letters are more common than others. Suppose we estimate that a character o occurs with
probability p, in a given context. The best possible code will use — log,(p,) bits to represent
that character. If one estimates p, one can construct a prefiz code with about —log,(pa)
bits for each character in the following manner:

e build a binary tree with one leaf for each character «
e organize the tree so that the depth of a is approximately —log,(pa)

e use a binary representation of the path (0=left, 1=right) to represent « in the com-
pressed data.

One way to estimate p, is simply to compute the fraction of characters equal to o in a
sample of data similar to that to be compressed. Another is to use an adaptive method, in
which the data is compressed one character at a time, and the sample consists of the text
already compressed. A sample of English text is available in the file sampleText .txt.

It is also possible to estimate p, using the context in which it occurs; for example, in
English a “q” is very likely to be followed by a “u” (e.g., quick, quack, quit, quiz, but not
giviut, which happens to be the wool of a musk-ox).

Use this information, or any other information at your disposal, to build the best Com-

pressor and Decompressor you are able.

Input

The input to compress will consist of n characters (1 < n < 1000000), as described
above.

The input to decompress will consist of m 0s and 1s (1 < m < 8n).

Output

The output of compress will be a sequence of 0s and 1s, with no other characters (i.e.,
no newline characters should be outputted).

The output of decompress is a sequence of at most 1000000 uppercase letters, lowercase
letters, spaces, newlines and punctuation symbols.

Sample Input (to compress)

To be or not to be?

Possible Output for Sample Input (compress)

01110010000101100001001101000011000100111100000111100100001011011111

Sample Input (to decompress)

01110010000101100001001101000011000100111100000111100100001011011111

Output for Sample Input (decompress)

To be or not to be?

Explanation

The sample compressor systematically uses the following codes for each of the input

characters:

<space>

000

(0]

010

01100

01101

01110

011110

011111

10

®|C| V||| H

11

The compressed output uses these codes, as shown below

01110010000101100001001101000011000100111100000111100100001011011111

TTTTTooo0

bbee

o00IrTrIrrr

nnnnnoootttttt

ttttttooo

