
2006
Canadian
Computing
Competition:
Junior
Division

Sponsor:

Canadian Computing Competition
Student Instructions for the Junior Problems

1. You may only compete in one competition. If you wish to write the Senior paper, see the
other problem set.

2. Be sure to indicate on your Student Information Form that you are competing in the Junior
competition.

3. You have three (3) hours to complete this competition.

4. You should assume that

� all input is from the keyboard
� all output is to the screen

For some problems, you may be asked for prompting: please provide this for the user. If
no prompting is required, you do not need to provide any. Be sure your output matches the
output in terms of order, spacing, etc. IT SHOULD MATCH EXACTLY!

5. Do your own work. Cheating will be dealt with harshly.

6. Do not use any features that the judge (your teacher) will not be able to use while evaluating
your programs.

7. Books and written materials are allowed. Any machine-readable materials (like other pro-
grams which you have written) are not allowed. However, you are allowed to use “stan-
dard” libraries for your programming languages; for example, the STL for C++, java.util.*,
java.io.*, etc. for Java, and so on.

8. Applications other than editors, compilers, debuggers or other standard programming tools
are not allowed. Any use of other applications will lead to disqualification.

9. Please use file names that are unique to each problem: for example, please use j1.pas or
j1.c or j1.java (or some other appropriate extension) for Problem J1. This will make
the evaluator’s task a little easier.

10. Your program will be run against test cases other than the sample ones. Be sure you test your
program on other test cases.

11. Note that the top 2 Junior competitors in each region of the country will get a plaque and
$100, and the schools of these competitors will also get a plaque. The regions are:

� West (BC to Manitoba)
� Ontario North and East
� Metro

� Ontario Central and West
� Quebec and Atlantic

12. Check the CCC website at the end of March to see how you did on this contest, how the
problems were meant to be solved, and to see who the prize winners are. The CCC website
is:

www.cemc.uwaterloo.ca/ccc

Problem J1: The New CCC (Canadian Calorie Counting)
Problem Description
At Chip’s Fast Food emporium there is a very simple menu. Each food item is selected by entering
a digit choice.

Here are the three burger choices: Here are the three drink choices:
1 – Cheeseburger (461 Calories) 1 – Soft Drink (130 Calories)
2 – Fish Burger (431 Calories) 2 – Orange Juice (160 Calories)
3 – Veggie Burger (420 Calories) 3 – Milk (118 Calories)
4 – no burger 4 – no drink
Here are the three side order choices: Here are the three dessert choices:
1 – Fries (100 Calories) 1 – Apple Pie (167 Calories)
2 – Baked Potato (57 Calories) 2 – Sundae (266 Calories)
3 – Chef Salad (70 Calories) 3 – Fruit Cup (75 Calories)
4 – no side order 4 – no dessert

Write a program that will compute the total Calories of a meal.

Input Specifications
The program should prompt the user for a number for each type of item then calculate and display
the Calorie total. You may assume that each input will be a number from 1 to 4. That is, each
customer has to pick exactly one number from each of the four options out of each of the four
categories.

Output Specifications
The program prints out on the screen the total Calories of the selected meal, and stops executing
after this output.

Sample Prompting and User Input (user input in italics)
Welcome to Chip’s Fast Food Emporium
Please enter a burger choice: 2
Please enter a side order choice: 1
Please enter a drink choice: 3
Please enter a dessert choice: 4

Output for the Sample
Your total Calorie count is 649.

Problem J2: Roll the Dice
Problem Description
Diana is playing a game with two dice. One die has � sides labelled 1, 2, 3, ..., � . The other die
has � sides labelled 1, 2, 3, ..., � . Write a program to determine how many ways can she roll the
dice to get the sum 10.

For example, when the first die has 6 sides and the second die has 8 sides, there are 5 ways to get
the sum 10:

����� � �
	

���� � �
	

����� � �
	

����� � �
	

����� � �
	

Input Specifications
The input is given as two integers. First, the user is prompted for and must enter in the number �

(
��� � ���
	�	�	

). Second, the user is prompted for and must enter the number � (
���

�
���
	�	�	

).

Output Specifications
The program prints out the number of ways 10 may be rolled on these two dice. Note that in the
output, the word “way” should be used if there is only one way to achieve the sum of 10; otherwise,
the word “ways” should be used in the output. That is, if there is only one way to get the sum 10,
the output should be:

There is 1 way to get the sum 10.

Sample Prompting and User Input 1 (user input in italics)
Enter m: 6
Enter n: 8

Output for Sample 1
There are 5 ways to get the sum 10.

Sample Prompting and User Input 2 (user input in italics)
Enter m: 12
Enter n: 4

Output for Sample 2
There are 4 ways to get the sum 10.

Problem J3: Cell-Phone Messaging

2
abc

3

4

7

def

_0

8 9

65

1

jkl mno

wxyztuv

ghi

pqrs

Problem Description
Joe Coder has just received a cell phone for his birthday. At first he was
not so excited about it, since he does not like to talk that much, nor listen
for that matter, and he hates being interrupted by phone calls while coding
or playing his favourite computer game. But, Joe learned that he can talk
to his friends and also send e-mails. That made the phone cool.

In order to fit the 26 letters of the alphabet onto the keys of a cell phone,
several letters are assigned to each key, as shown on the diagram.
To write a text message, we have to choose a letter from a set assigned
to a key. The first letter on a key is chosen by pressing the key once, the
second letter by pressing the key twice, third letter by pressing the key
three times, and so on.
For example, to write “a” we press the key ‘2’ once and we are done; to write “dada” we press
3232—four key presses; and to write “bob” we press 2266622. An obvious issue is how to write
two consecutive letters on the same key, for example in ‘abba’ or ‘cell’. The problem is solved by
introducing a time-out feature: a letter currently displayed is chosen when another key is pressed,
but also after a pause, i.e., a time out. Hence for example, to write ‘abba’ we press 2-pause-
22-pause-22-pause-2; to write ‘cell’ we press 22233555-pause-555; or to write ‘www’ we press
‘9-pause-9-pause-9’.

This kind of typing takes some time, and Joe is working on a program to calculate how much
time is needed to type certain words. His assumption is that he spends one second per press, and
whenever he makes a pause he loses an additional two seconds. You are to help him to calculate
the minimal time needed to type a message, under the above assumptions.

Input Specifications
Each line of input contains a word consisting only of lowercase letters. Words have at most 20
characters. Input will be given from the keyboard, and the program should stop reading input
when the word halt has been entered.

Output Specifications
For each input word (excluding the word halt), print (on the screen) the minimal number of
seconds needed to type in the word, with one number of output per line.

Sample Input
a
dada
bob
abba
cell
www
halt

Output for Sample Input
1
4
7
12
13
7

Problem J4: It’s tough being a teen!
Problem Description
There is always a list of things to be done!

Here is a list for you left just this morning by your parental figure.

1. Do your Math homework.

2. Call your grandma.

3. Call me at work.

4. Call your friend.

5. Feed the dog.

6. Let the dog out.

7. Watch television.

(It is nice that your parental figure makes sure you watch television, and not just use the internet
all day long.)

As well, your parental figure has given you constraints on these tasks:

� Do your Math homework BEFORE you watch Television.

� Do your Math homework BEFORE you call your friend.

� Call your grandma BEFORE you do your Math homework.

� Call me at work BEFORE you call your friend.

� Feed the dog AFTER you call me at work.

Your “to do” list (above) can now be abbreviated to:

1,7
1,4
2,1
3,4
3,5

where ����� indicates that the task numbered � should be done before the task numbered � .

Unfortunately, during the day additional instructions are emailed to you by your parental figure.
Write a program to use your original “to do” list and the additional instructions to output a list of
your jobs in the order you must do them, or alternately, if you cannot complete them, you should
output that there is no way to complete these tasks, and you are just going to go to bed.

Input Specifications
You will be given pairs of numbers, one number per line, to represent the additional instructions
to be included with your original “to do” list given above. The data terminates with the input pair
0 and 0. You can assume that there will be at most 10 additional constraints.

Output Specifications
You should output a list of tasks in the order that they should be performed, or an error message
saying that the tasks cannot be completed. If there are multiple orders in which the tasks may be
completed, the following tie-breaking rule must be used:

If there is a set of tasks which may be performed at the same time during the process,
the smallest numbered task should be performed first.

Sample Input 1
6
2
5
4
0
0

Output for Sample Input 1
3 5 6 2 1 4 7

Explanation for Sample Output 1
The input data tells us that task 6 must be performed before task 2, and task 5 before task 4. The
only tasks with no prerequisites are 3 and 6, so we choose 3 because it has the lower number. Then
5 and 6 are possible; 5 is chosen, then 6. Next must come 2, followed by 1. Then both 4 and 7 are
possible; the lower one is chosen first.

Sample Input 2
7
2
4
5
0
0

Output for Sample Input 2
Cannot complete these tasks. Going to bed.

Explanation for Sample Output 2
Notice that task 2 must be done before task 1, which must be done before task 7, which must
be done before task 2. This forms a contradiction, and we cannot perform the tasks in the order
prescribed.

Problem J5: CCC Othello
Problem Description
Othello (also known as Reversi or Black & White Chess) is a game played on an 8x8 board,
similar to a checker board. For the purposes of describing this question, the spaces on the board
are referred to by their row and column position, with the top row referred to as row 1 and the left
hand column referred to as column 1. The game involves placing circular discs, one at a time, on
the board. The discs are coloured black on one side and white on the other. One player places
his/her discs with the white side up and the other player places his/her discs with the black side up.

The game starts with some discs already placed on the board.

A move is valid if the following two conditions are satisfied:

1. The piece placed on the board is adjacent to a piece on the board (i.e, beside a piece either
horizontally, vertically or diagonally).

2. At least one of your opponents’ discs must be “flipped.” If you are playing black pieces, you
flip your opponents’ (white) pieces (to black) so long as your opponents’ pieces are on a line
(either horizontally, vertically or diagonally) between the latest piece placed on the board
and another black piece, with no other black pieces or empty squares in between the most
recently placed black piece and the given white piece. The same rule applies if the player is
placing white pieces.

Here are a couple of sample valid moves, starting from various configurations of the board:

Board at the beginning of the game Board after the black player has
placed a disc in row 5 and column 6.

Board after several plays by each player Board after the white player has
placed a disc in row 4 and column 6

Board after several plays by each player Board after the white player has
placed a disc in row 1 and column 4.

In the CCC version of Othello, the board may start with one of 3 configurations. Play will always
start with the black player taking the first turn, and then alternating white to black for the rest of
the turns. You must write a program to simulate taking turns in an Othello game, and at the end,
report how many pieces of each colour are on the board.

Input Specifications
The user will enter three components of input (via the keyboard).

First the user will enter a letter representing the configuration of the initial board (either a, b or c).

Here are the initial configurations for the board.

Configuration ’a’ Configuration ’b’ Configuration ’c’

The second component of input will be an integer � , where
	 �

�
� ��	

which indicates the
number of moves to be made in the simulation. The third component of input is � pairs of integers��� ����� , where

��� � � �
and

� � � � � , and
�

represents the row and � represents the column
of the next move.

Remember that the first move will be made by the black player, the next move will be made by the
white player, then the black player, then the white player, and so on. You may also assume that all
moves

��� ����� will be valid moves on empty spaces on the board.

Output Specifications
The program will output the number of black discs showing followed by the number of white discs
showing on the board after the moves have been made. You are not responsible for displaying a
picture of the board during the game. However, during your own testing, this may be useful.

Sample Input 1
a 1 5 6

Output for Sample Input 1
4 1

Sample Input 2
b 0

Output for Sample Input 2
8 8

Sample Input 3
c 3 1 7 2 2 2 1

Sample Output for Sample Input 3
22 13

