2003 Canadian Computing Competition, Stage 2 Day 2, Question 1

Input file: perm.in
Output file: perm.out
Source file: n:\perm\perm

Constrained Permutations

A permutation on the numbers 1, 2, ..., n is a linear ordering of the numbers. For example, there are 6 permutations of the numbers 1, 2, 3. They are 123, 132, 213, 231, 312 and 321. Another way to think of it is removing n disks numbered 1 to n from a bag (without replacement) and recording the order in which they were drawn out.

Mathematicians (and other smart people) write down that there are $n! = n \cdot (n-1) \cdot \cdots \cdot 3 \cdot 2 \cdot 1$ permutations of the numbers $1, \ldots, n$. We call this "n factorial."

For this problem, you will be given an integer n $(1 \le n \le 9)$ and a series of k $(k \ge 0)$ constraints on the ordering of the numbers. That is, you will be given k pairs (x, y) indicating that x must come before y in the permutation.

You are to output the number of permutations which satisfy all constraints.

Input

Your input will be k+2 lines. The first line will contain the integer n. The second line will contain the integer k, indicating the number of constraints. The remaining k lines will be pairs of distinct integers which are in the range $1, \ldots, n$.

Output

Your output will be one integer, indicating the number of permutations of $1, \ldots, n$ which satisfy the k constraints.

Sample Input 1

3

2

1 2

2 3

Sample Output 1

1

Sample Input 2 4 2 1 2 2 1 Sample Output 2 0 Sample Input 3 4 2 1 2 2 3 Sample Output 3