The CENTRE for EDUCATION in MATHEMATICS and COMPUTING cemc.uwaterloo.ca

From the archives of the CEMC

May 2017 Solutions

In honour of the 50th anniversary of the Faculty of Mathematics, at the beginning of each month of 2017, a set of five problems from the 54 years of CEMC contests will be posted. Solutions to the problems will be posted at the beginning of the next month. Hopefully, these problems will intrigue and inspire your mathematical mind. For more problem solving resources, please visit cemc.uwaterloo.ca.

1. 1985 Euclid Contest, Question A6
L and M are fixed points, 5 cm apart. The set of all points P in the plane, for which the triangle $L M P$ has an area of $20 \mathrm{~cm}^{2}$, is
(A) a circle, diameter $L M$
(B) a pair of lines perpendicular to $L M$
(C) one line perpendicular to $L M$
(D) a pair of lines parallel to $L M$
(E) one line parallel to $L M$

Solution

If the area of triangle $L M P$ is $20 \mathrm{~cm}^{2}$ and the base is 5 cm , then if the height is $h \mathrm{~cm}$, we have $\frac{1}{2}(5) h=20$ or $h=8$.
Thus, the set of all points P is the set of points when the perpendicular distance to $L M$ is 8 cm .
The set of points 8 cm from $L M$ is a pair of lines parallel to $L M$.
ANSWER: (D)
2. 1968 Ontario Senior Mathematics Problems Contest, Question 2
(a) Given that the equation

$$
x^{3}+a x^{2}+b x+c=0
$$

has roots r_{1}, r_{2}, r_{3}, develop formulae for $r_{1}+r_{2}+r_{3}, r_{1} r_{2}+r_{1} r_{3}+r_{2} r_{3}$, and $r_{1} r_{2} r_{3}$.
(b) For the equation

$$
x^{3}+2 x^{2}+7 x-19=0
$$

compute the values of $r_{1}^{2}+r_{2}^{2}+r_{3}^{2}$ and $r_{1}^{3}+r_{2}^{3}+r_{3}^{3}$.

Solution

(a) Since r_{1}, r_{2}, r_{3} are roots, then $\left(x-r_{1}\right)\left(x-r_{2}\right)\left(x-r_{3}\right)=x^{3}+a x^{2}+b x+c$.

Expanding, we obtain

$$
\begin{aligned}
\left(x^{2}-\left(r_{1}+r_{2}\right) x+r_{1} r_{2}\right)\left(x-r_{3}\right) & =x^{3}+a x^{2}+b x+c \\
x^{3}-\left(r_{1}+r_{2}+r_{3}\right) x^{2}+\left(r_{1} r_{2}+r_{1} r_{3}+r_{2} r_{3}\right) x-r_{1} r_{2} r_{3} & =x^{3}+a x^{2}+b x+c
\end{aligned}
$$

Comparing coefficients in this identity, we find

$$
\begin{aligned}
r_{1}+r_{2}+r_{3} & =-a \\
r_{1} r_{2}+r_{1} r_{3}+r_{2} r_{3} & =b \\
r_{1} r_{2} r_{3} & =-c
\end{aligned}
$$

(b) For the given equation,

$$
\begin{aligned}
r_{1}+r_{2}+r_{3} & =-2 \\
r_{1} r_{2}+r_{1} r_{3}+r_{2} r_{3} & =7 \\
r_{1} r_{2} r_{3} & =19
\end{aligned}
$$

Since

$$
\left(r_{1}+r_{2}+r_{3}\right)^{2}=r_{1}^{2}+r_{2}^{2}+r_{3}^{2}+2 r_{1} r_{2}+2 r_{1} r_{3}+2 r_{2} r_{3}
$$

then

$$
r_{1}^{2}+r_{2}^{2}+r_{3}^{2}=\left(r_{1}+r_{2}+r_{3}\right)^{2}-2\left(r_{1} r_{2}+r_{1} r_{3}+r_{2} r_{3}\right)=4-14=-10
$$

Also, $r_{1}^{3}+2 r_{1}^{2}+7 r_{1}-19=0$ and $r_{2}^{3}+2 r_{2}^{2}+7 r_{2}-19=0$ and $r_{3}^{3}+2 r_{3}^{2}+7 r_{3}-19=0$. Thus,

$$
\begin{aligned}
r_{1}^{3}+r_{2}^{3}+r_{3}^{3} & =-2\left(r_{1}^{2}+r_{2}^{2}+r_{3}^{2}\right)-7\left(r_{1}+r_{2}+r_{3}\right)+3(19) \\
& =-2(-10)-7(-2)+57 \\
& =91
\end{aligned}
$$

3. 1981 Gauss Contest, Question 22

A base row of blocks is formed and rows of blocks are added so that each new row has one fewer block that the row below it. If the base has nine blocks and the final row has one block, the total number of blocks used is
(A) 6
(B) 36
(C) 40
(D) 45
(E) 81

Solution

From the given information, the total number of blocks is $1+2+3+4+5+6+7+8+9=45$.

ANSWER: (D)
4. 1986 Descartes Contest, Question 9

In $\triangle A B C, a b^{2} \cos A=b c^{2} \cos B=c a^{2} \cos C$. Prove that the triangle is equilateral.

Solution

By the cosine law, $a^{2}=b^{2}+c^{2}-2 b c \cos A$ and so $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$.
Similarly, $\cos B=\frac{c^{2}+a^{2}-b^{2}}{2 c a}$ and $\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$.
Therefore,

$$
\frac{a b^{2}\left(b^{2}+c^{2}-a^{2}\right)}{2 b c}=\frac{b c^{2}\left(c^{2}+a^{2}-b^{2}\right)}{2 c a}=\frac{c a^{2}\left(a^{2}+b^{2}-c^{2}\right)}{2 a b}
$$

Multiplying by $2 a b c$ gives

$$
a^{2} b^{2}\left(b^{2}+c^{2}-a^{2}\right)=b^{2} c^{2}\left(c^{2}+a^{2}-b^{2}\right)=c^{2} a^{2}\left(a^{2}+b^{2}-c^{2}\right)
$$

Dividing by $a^{2} b^{2} c^{2}$ gives

$$
\frac{b^{2}+c^{2}-a^{2}}{c^{2}}=\frac{c^{2}+a^{2}-b^{2}}{a^{2}}=\frac{a^{2}+b^{2}-c^{2}}{b^{2}}
$$

Now if $r=\frac{p}{q}=\frac{s}{t}$, then $\frac{p+s}{q+t}=\frac{q r+r t}{q+t}=r$.
Therefore, each of these fractions is equal to

$$
\frac{\left(b^{2}+c^{2}-a^{2}\right)+\left(c^{2}+a^{2}-b^{2}\right)+\left(a^{2}+b^{2}-c^{2}\right)}{c^{2}+a^{2}+b^{2}}
$$

But this fraction equals 1 after simplification.
Thus, $b^{2}+c^{2}-a^{2}=c^{2}$ and $b^{2}=a^{2}$ or $b=a$.
Similarly, $a=c$, so $a=b=c$, and the triangle is equilateral.
5. 1977 Gauss Contest, Question 10

The maximum number of points of intersection of 4 distinct straight lines is
(A) 4
(B) 5
(C) 6
(D) 7
(E) none of these

Solution

The first line drawn will have 0 intersections.
The second line can have at most 1 intersection.
The third line can have at most 2 intersections.
The last line can have at most 3 intersections.
Thus at most there will be $0+1+2+3=6$ intersections.
ANSWER: (C)

